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Tiivistelmä

Kvanttitietokoneiden nopeiden edistysaskeleiden odotetaan mahdollistavan te-
hokkaita tosielämän sovelluksia. Kun kvanttitietokoneet tulevat riittävän toiminta-
kykyisiksi, tärkeimmät kryptografiset julkisen avaimen primitiivimme voivat valitet-
tavasti murtua Shorin algoritmin avulla. Siksi National Institute for Standards and
Technology (NIST) on käynnistänyt kilpailun kvanttiturvallisten avainten kapseloin-
timekanismien kehittämiseksi. NIST-kilpailun voittajat on suunniteltu tarjoamaan
turvallisuutta mustan laatikon hyökkäyksiä vastaan, mutta niiden turvallinen käyt-
töönotto edellyttää myös vastustuskykyä sivukanavahyökkäyksille.

Tämän projektin keskiössä on hilapohjaisten kvanttiturvallisten primitiivien en-
tistä parempi kryptanalyysi perustutkimusta ja käytännön arviointia yhdistäen. Py-
rimme tunnistamaan taustalla olevien matemaattisten rakenteiden hyödyllisiä om-
inaisuuksia, jotka tekevät niistä vastustuskykyisiä hyökkäyksille, minkä jälkeen et-
simme nämä ehdot täyttäviä potentiaalisia ehdokkaita.

Abstract

The current advances in quantum computing are expected to enable powerful
real-life applications. Unfortunately, once quantum computers become efficient
enough, our most important cryptographic public-key primitives can be broken via
Shor’s algorithm. Therefore, the National Institute for Standards and Technology
(NIST) has started a competition for quantum secure key encapsulation mecha-
nisms. The winners of the NIST competition are tailored to provide black-box se-
curity, but their secure deployment also requires resistance against side-channel
attacks.

The focus of this project is in improving the cryptanalysis of lattice-based post-
quantum primitives, combining foundational research with practical evaluation. In
particular, we identify useful features of the underlying mathematical structures
that make them resistant against attacks, and then set out to find potential candi-
dates satisfying these properties.
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1 Introduction
The backbone of the security of our communication is formed by cryptographic proto-
cols such as TLS, the security protocol behind HTTPS, and EMV, the security protocol
for secure payment by credit card. All of these protocols use cryptographic paradigms
that are severely threatened by quantum computers, as they rely on computational
problems that were presumed to be hard but can be efficiently solved by a quantum
computer. Such problems include the factorization of large integers and the discrete
logarithm problem. Even though no classical polynomial-time algorithms to solve
these problems are known to date, there is a polynomial-time quantum algorithm
developed by Shor in 1994 [26]. This means that data that is communicated and
stored now utilizing vulnerable classical cryptography is likely to be revealed in the
future, once efficient and stable enough quantum computers emerge. Thus, it is im-
portant to transition to post-quantum cryptography without delay, even before the
development of quantum computers matures.

This led the National Institute of Standards and Technology (NIST) [22] to launch
a competition in 2016 for proposals for encryption schemes that are quantum secure
to replace the present ones. Following this, in the summer of 2023 NIST published
a set of new draft standards containing new algorithms for post-quantum public-key
cryptography as well as several candidates for signature algorithms. One of these
is the FIPS 203 containing the Module-Lattice-Based Key-Encapsulation Mechanism
Standard (ML-KEM) [21]. These paradigms belong to the area of cryptography re-
ferred to as lattice-based cryptography (LBC). The draft standard is still in its infancy
and needs to be better understood. In this project, we focus on the CRYSTALS-Kyber
(shortly, Kyber), a key encapsulation mechanism included in the ML-KEM draft stan-
dard. We study the security of the implementations of Kyber as well as alternative
solutions in the foresight of Kyber potentially turning out to be insecure.

2 Research objectives and accomplishment plan
The main objective of this project is in developing a better understanding of the
security of lattice-based cryptosystems, both, with respect to black-box security and
with respect to side-channel attacks. Lattice-based key encapsulation mechanisms
usually rely on variants of the so-called learning with errors problem (LWE, more
details below), where two important ingredients are the error distribution and the
choice of the lattice guaranteeing black-box security. We focus on the latter. To
summarize, the main objectives and their subtasks are listed below.

Objective 1: Systematic cryptanalysis of lattice-based cryptography

1.1 Systematically determine properties and invariants of lattices which make them
robust against black-box attacks and which allows for implementations that are
robust against side-channel attacks.

1.2 Find lattices which satisfy these properties.

Objective 2: Practical evaluation

2.1 Implement and test our novel attack methods on existing lattice-based NIST
draft standard candidate Kyber.

2.2 Implement and evaluate the side-channel resistance of implementations of our
own lattice-based key encapsulation mechanisms.

Alternatives to Kyber. The security of Kyber is based on a mathematical structure
called a (Euclidean) lattice. We study properties that might make such structures
insecure and which one should hence avoid when choosing the underlying lattice.
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A list of properties was already known, on one hand giving sufficient conditions for
an attack and on the other hand providing desirable properties. In this project, we
identify which of these properties are also necessary and which ones are the core
properties causing weaknesses that we wish to avoid. Some of the desired properties
can also be extended to hold in more general structures. More details to follow in the
results section.

Implementations. The security of implementations of cryptography has been stud-
ied for a long time, but since the algorithms are new and very different from the pre-
vious algorithms, we now need to understand which parts can be vulnerable, and a
major part of our research falls into this domain. Kyber is built on having smaller ci-
phertexts at the cost of a slightly more inefficient decryption algorithm. An outcome
of this choice is that the decryptions perform more operations on the secret inputs.
We show that this is a weakness as performing more operations on the secrets leaks
more information.

The learning with errors (LWE) problem proposed by Oded Regev [25] in 2005 is
one of the first problems in LBC that is supposedly quantum-safe. At its core lies the
notion that even for a seemingly uncomplicated multiplication, an introduction of a
minor error term, or “noise,” renders the task of uncovering all the products involved
in the operation exceedingly challenging. In addition, among many applications of
LWE, it plays a great role in homomorphic encryption, which is a method of encrypt-
ing plaintext that allows for users to compute directly with the ciphertext without
decryption. This has great relevance in cloud computing. Despite its security advan-
tages, LWE is computationally expensive. This limitation motivated the construction
of other variants with an extra algebraic structure to handle these lapses. The orig-
inal implementation of LWE was later updated by Lyubashevsky, Peikert, and Regev
[19] to ring learning with errors (RLWE). The key difference here is that instead of
using integers, we use elements from certain algebraic structures. The main benefit
of this is that we can efficiently implement the algorithm at the cost of the presumed
level of security. Therefore, the main issue here is to verify the security aspect of
RLWE.

As one may expect, these new additional structures come with a price, yet are
efficient for secure encryption even in the post-quantum era. Numerous works are
trying to generalize the RLWE, changing various conditions and parameters and scru-
tinising its effectiveness and security. The influential works of Eisentraeger, Hallgren
and Lauter [11] and Elias, Lauter, Ozman, and Stange [12] motivated us to look pre-
cisely at the issues and conditions proposed by them (see the list in the next section).
The list served as a guideline for the conditions to aspire to in order to ensure secu-
rity. It also highlighted aspects to be cautious about to prevent vulnerabilities in the
system.

3 Materials and methods
Let us delve into more technical descriptions, though non-experts can safely skip this
section. The LWE problem and its variants provide presumably hard problems that
form the basis for cryptosystems that are quantum secure. We briefly describe the
LWE and RLWE problems in the following. The residue ring of integers modulo q is
denoted by Zq.
Definition 1. [25]: Given the parameter (prime) q and an error distribution χ over
Zq the search version of the learning with errors (LWE) is defined as follows:

• Let s ∈ Zq be an element (secret) chosen uniformly at random.

• Given access to arbitrarily many samples {(ai, ais+ei)}i≥1 of the LWE distribution
where i ≥ 1, ai is chosen uniformly at random and ei is sampled from χ, recover
s with non-negligible advantage.
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We can extend the previous definition to RLWE and to polynomial LWE (PLWE):

Definition 2. [19],[27]: Let K be a number field, OK its ring of integers and O =
Z[x]/(f(x)) with f(x) monic and irreducible in Z[x]. Let χ be an error distribution over
OK/qOK (resp. in O/qO). The RLWE (resp. PLWE) problem for χ is defined as follows:

• Let s ∈ OK/qOK (resp. O/qO) be an element (secret) chosen uniformly at ran-
dom.

• Given access to arbitrary many samples {(ai, ais + ei)}i≥1 of the RLWE (resp.
PLWE) distribution, where for each i ≥ 1, ai is chosen uniformly at random and
ei is sampled from χ, recover s with non-negligible advantage.

The decision problem differs in that, instead of finding the secret s, one must dis-
cern a distinction between genuine samples (ai, ais+ ei)i≥1 and a randomly generated
output, with a non-negligible advantage.

Let us introduce the list from the work of Eisentraeger, Hallgren and Lauter [11].
Again, K will be a number field and OK denotes its ring of integers. Finally, we assume
that q is a (sufficiently large) prime number.

1. (q) splits completely in K, and q ∤ [OK : Z[β]].

2. K is Galois over Q.

3. The ring of integers of K is generated over Z by β, OK = Z[β] = Z[x]/(f(x)) with
f ′(β) (mod q) ‘small’.

4. The transformation between the Minkowski embedding of K and the power basis
representation of K is given by a scaled orthogonal matrix.

5. Let f ∈ Z[x] be the minimal polynomial for β, such that f(1) ≡ 0 (mod q), where q
can be chosen to be sufficiently large.

Items (1) and (2) enable us to demonstrate that the decision RLWE problem is as
hard as the search RLWE problem (i.e., there exists a reduction). Moreover, if we can
nonrandomly distinguish the samples, an algorithm exists that outputs the secret.
These items (1) and (2) are associated with the utilization of the Chinese Remainder
Theorem and the “nice behavior” of the error distributions. On the other hand, items
(3) and (4) facilitate the reduction of the RLWE average-case decision problem to
PLWE. The last item is to be avoided, as it opens an opportunity for an attack.

4 Results and discussion
The results are grouped under the related Objective/Task described above.

4.1 Objective 1.1
In [6] and [5] we look at some of the weak variants of PLWE. It is worth mention-
ing that these attacks do not threaten the present-day cryptosystems which rely on
PLWE, however, give us a list of parameters to avoid if we start considering other op-
tions or weakening the present conditions. In [7] we study the equivalence between
RLWE and PLWE. In [1] we perform a cryptanalysis of an approach to homomorphic
encryption proposed by Leonardi and Ruiz-Lopez in [18]. Next, we will give a brief,
high-level description of these projects.
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4.1.1 Trace-based cryptanalysis of cyclotomic Rq0 × Rq-PLWE for the non-
split case [6]

In this paper, we describe a decisional attack against a version of the PLWE problem
in which the samples are taken from a certain proper subring of large dimension
of the cyclotomic ring Fq[x]/(φpk(x)) with k > 1 in the case where q ≡ 1 (mod p) but
φpk(x) is not totally split over Fq. Our attack uses the fact that the roots of φpk(x) over
suitable extensions of Fq have zero-trace and have overwhelming success probability
as a function of the number of input samples.

4.1.2 Cryptanalysis of PLWE based on zero-trace quadratic roots [5]

We extend two of the attacks on the PLWE problem presented in [12] to a ring
Rq = Fq[x]/(f(x)) where the irreducible monic polynomial f(x) ∈ Z[x] has an irreducible
quadratic factor over Fq[x] of the form x2 + ρ with ρ of suitable multiplicative order in
Fq. Our attack exploits the fact that the trace of the root is zero and has overwhelming
success probability as a function of the number of samples taken as input.

4.1.3 On homomorphic encryption using abelian groups: Classical security
analysis [1]

Despite the importance of homomorphic encryption, it is worth noting that construct-
ing such an encryption scheme is hard. The closest the community has come in this
regard is by using maps based on (variants of) the LWE problem though not fully
homomorphic.

In the paper [1], we explore an alternative approach for homomorphic encryption
introduced by Leonardi and Ruiz-Lopez in [18]. A big advantage of the Leonardi–Ruiz-
Lopez approach over the basic LWE approach is that the noise, which plays the role
of the errors in LWE-based homomorphic encryption, does not grow with repeated
computation. As such, there is no limitation on the number of additions that can
be computed on encrypted data. However, it is not clear if this construction can be
extended to multiplicative homomorphic encryption. Choosing parameters for their
primitive requires choosing three groups G, H, and K. They claim that, when G, H, and
K are abelian, then their public-key cryptosystem is not quantum secure. Though in
the non-abelian setting, it has some hopes of being quantum secure. In this paper,
we study security for finite abelian groups G, H, and K in the classical case. Moreover,
we study quantum attacks on instantiations with solvable groups.

4.1.4 Fast polynomial arithmetic in homomorphic encryption with cyclo-
multiquadratic fields [7]

RLWE is well-suited for theoretical considerations, while PLWE is preferable for prac-
tical applications. Moreover, the complexity of the PLWE problem is rooted in its
reduction to a hard lattice problem through the RLWE problem — specifically, solv-
ing RLWE implies the existence of a quantum algorithm for the approximate shortest
vector problem (SVP) on ideal lattices, which is presumed to be a hard problem (in
general, it is worth noting that the approximation factors in reduction proofs often
leave quite some gap to the problems that are actually known to be NP-hard). As
such, studying the equivalence between PLWE and RLWE becomes of great interest
to the cryptography community, especially in LBC. The transformation between these
two leads to a noise distortion which is measured by the condition number. We pro-
vide refined polynomial upper bounds for the condition number of cyclotomic fields
with up to 6 different primes dividing the conductor.

We further discuss the advantages and limitations of cyclotomic fields to have
fast polynomial arithmetic within homomorphic encryption and show how these limi-
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tations can be overcome by replacing cyclotomic fields with a family that we refer to
as cyclo-multiquadratic fields. This family is of particular interest due to its arithmetic
efficiency properties and to the fact that the PLWE and RLWE problems are equivalent
for this family.

4.2 Objectives 1.1-1.2
Let us describe some relevant updates to the list of Eisentraeger, Hallgren and Lauter
that we discussed earlier. These updates are largely based on a careful review on
recent literature and stitching together various different aspects. This part of our
research reaches over both the tasks in Objective 1, and provides us with the desired
and to-be-avoided properties of number fields for RLWE variants.

We begin with condition (1), which concerns the choice of the prime number em-
ployed in the algorithm. The authors in [17] have demonstrated the feasibility of
relaxing the arithmetic requirements for the prime q (using the “modulus-switching”
technique) at the price of slight increases in the error term.

Condition (2), on the number field being Galois, can also be relaxed due to the work
of Peikert, Regev, and Stephens-Davidowitz [24], where they manage to completely
avoid a search-to-decision reduction, which in turn means that we can avoid the
restriction on the number field being Galois. In the work, the authors did not find
strong evidence for a particular choice of a number field, other than signifying that
number fields with dual rings that have a small shortest vector appeared to be less
secure.

Condition (3) is regarding the so-called monogenicity condition. Elias, Lauter, Oz-
man, and Stange in [12] already knew that it was a rather common occurrence. Re-
cently, it was reaffirmed [4] that more than 60% of candidates will satisfy such a
condition. Although monogenicity is not rare, the primary challenge was the combi-
nation of conditions (2) and (3). Given the possibility of forgoing condition (2), this
becomes a more manageable task by e.g. randomly generating short polynomials of
a given degree that are irreducible and correspond to monogenic number fields.

Condition (4), which pertains to the transformation from Minkowski embedding
to power basis representation, is not vacuous. There are infinitely many instances
where, even among the “nice” candidates (i.e., cyclotomics), the transformation does
not allow for the equivalence among the problems that we want [10]. Nevertheless,
it is an invariant we can easily compute for a given example.

Condition (5) had seen some interesting developments. First of all, the search
for the given root can be easily checked. This condition can be further generalized
from having 1 as a root to the existence of a root of a small order. As mentioned
above, this condition relates to the existence of attacks on the RLWE. A related ques-
tion regarding the smearing condition was recently comprehensively addressed in
[3]. Furthermore, the family of such attacks was inspected in [23]. Specifically, the
invulnerability conditions proposed in the paper are weak enough so that the proper
implementation of RLWE in [19] is already provably immune from such attacks.

We have produced a list of possible candidates (i.e., alternatives to the power-
of-two cyclotomics). Specifically, these candidate polynomials are irreducible and
correspond to monogenic number fields. In the search, we attempted to find those
polynomials that have small condition numbers related to (4). All of these alterna-
tives will still have to be tested for attacks related to (5). There is perhaps a more
pragmatic approach by restricting the construction to trinomials, i.e., polynomials
with only three nonzero coefficients. There is a two-fold benefit here. One is heuris-
tics, given that with fewer coefficients, we may assimilate the good properties of the
power of two cyclotomic number fields. The latter, and more important, is that there
is a body of work on studying monogenic number fields among trinomials. It could
also imply that it is easier to control certain important invariants, like the condition
number. The research toward this goal is ongoing.
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4.3 Objective 2.1
4.3.1 Breaking DPA-protected Kyber via the pair-pointwise multiplication [8]

In this paper we study the security of Kyber in light of side-channel analysis attacks.
Side-channel attacks consist on observing and analysing the physical parameters
generated by a device running a cryptographic algorithm. Such parameters can be
the power consumption of the device or the electromagnetic emissions generated
during computations. The idea is that these physical parameters are dependent on
the secret values processed by these devices (usually the secret key of the crypto-
graphic scheme) and a careful analysis may reveal the value of the secret key.

We present an attack on the decapsulation process of Kyber which helps us ex-
tract the value of the long-term secret key of the scheme. This key is used for de-
cryption and it consists of a vector of polynomials represented in number-theoretic
transform (NTT) domain. For decryption, these secret polynomials are multiplied with
the cipher-text polynomials (also in NTT domain). In Kyber, two polynomials in NTT
domain are multiplied in a pair-pointwise fashion: each pair of secret coefficients is
multiplied with a pair of ciphertext-coefficients.

In our attack, we construct templates of power consumption for possible pairs
of secret coefficients and compare those templates with the power consumption of
the device under attack. We present different versions of our attack, varying on the
number of templates needed for a successful key extraction. We also explain how
our attack is successful against implementations of Kyber which actually implement
countermeasures against (other) side-channel attacks. We also discuss possible mit-
igation techniques against our attack and discuss the costs of such techniques

Our paper also studies the state of the art of side-channel attacks on Kyber. Par-
ticularly, our result exposes a leakage source on Kyber which had not yet been con-
sidered and which is also present in designs implementing side-channel countermea-
sures. Interestingly, this leakage is strong in Kyber, given that the polynomials in this
scheme are multiplied in pair-pointwise fashion [28].

4.3.2 Protecting the most significant bits in scalar multiplication algorithms
[2]

This paper also deals with side-channel security of cryptographic implementations.
Here we focus on elliptic curve-based schemes which make use of scalar multiplica-
tion algorithms, such as the Montgomery Ladder [20]. In such schemes, secret keys
correspond to randomly generated scalars and they are multiplied with points in an
elliptic curve. The multiplication is performed by processing the secret scalar bit by
bit, performing a series of arithmetic operations which depend on the value of the bit
being processed. Besides its use on elliptic curve cryptographic schemes, the scalar
multiplication also plays an important role in isogeny-based schemes.

In our work we show how the most significant bits of the secret scalar can be
easily extracted via simple side-channel observations. We exploit leakage which ap-
pears during the first iterations of the scalar multiplication algorithm, and show that
this leakage is caused by the values used for initialising the input variables of the
algorithm. We also explain how knowledge of the most significant bits can be ex-
ploited for enabling further physical attacks, including attacks proposed for isogeny-
based post-quantum (former) candidates. For mitigating this leakage, we propose
software-friendly countermeasures and show their effectiveness via power analysis
measurements. We propose two alternative methodologies for implementing these
countermeasures and show that they only imply very small performance penalties.
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4.4 Objective 2.2
The research in Objective 2.2 turned out somewhat obsolete as we expect the possi-
ble alternative constructions to exhibit similar kind of vulnerability for side-channel
attacks as for e.g. Kyber, relating to the tradeoff between the ciphertext size and
decryption efficiency. Namely, the vulnerability only arises if we choose a modulus
such that one needs to do an incomplete number-theoretic transform.

4.5 Objective 1: Advances in Number Theory
Lastly, we include some more indirectly relevant research that is closely related to
lattices.

4.5.1 Special journal issue on the theory and applications of Euclidean lat-
tices [13]

In this special issue of the journal Communications in Mathematics and the included
editorial survey we outline some of the main aspects of the important research area
of lattices at the intersection of theory and applications, including lattice-based cryp-
tography [6].

4.5.2 Fundamental research on lattices [9, 14, 15, 16]

The research in [9, 14, 15, 16] focuses on theoretical aspects of lattices and number
fields, with the primary goal of saying something abstract about them. However,
one of the byproducts is a better understanding of lattices in general, which could
be utilized to determine optimal parameters for constructing suitable number fields
for RLWE.

5 Conclusions
From project inception to the present, Kyber has transitioned from a contender to a
key selection in the NIST competition for post-quantum cryptography. Our assess-
ment covered theoretical robustness, practical execution, and potential vulnerabil-
ities. We focused on identifying attacks, especially against Kyber alternatives, and
explored immediate threats from side-channel attacks. Criteria for Kyber alternatives
were refined and parsed together, presenting a preliminary list for further scrutiny.
We looked into the theoretical aspects behind the (R)LWE, but further research to-
ward alternative solutions to Kyber is still needed and this work is ongoing. While
providing a foundation for addressing potential flaws in RLWE-based architectures,
our theoretical findings thus far are not a direct threat to Kyber’s security.

In the near future, we plan to construct explicit candidates for RLWE-based sys-
tems and analyze them further. We hope to identify algebraic properties that could
serve as a recipe for efficiency and hence make a welcome addition to the aforemen-
tioned list of desired properties. The side-channel attacks will also be further studied
as well as tested on a laboratory setting in collaboration with our partners.
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[15] V. Kala, P. Yatsyna, and B. Żmija. Real quadratic fields with a universal form of given rank
have density zero, 2023. arXiv:2302.12080.
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