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Abstract: The objective of the INTACT project is to analyze and develop methods for infra-

structure–free simultaneous localization and mapping (SLAM) and context recognition for tacti-

cal situational awareness. Most important research questions are how an accurate and reliable 

SLAM system may be obtained using a single camera, multiple inertial sensors and ranging 

equipment, and how good situational awareness the equipment provides. All measurements 

will be collected using only equipment attached to the user. Indoor environments are selected 

as a specific research environment, because localization is most challenging in those areas, but 

all results are well suited also for urban and for some extent for all outdoor environments. The 

project addresses applications aimed for soldiers, but the methods developed will serve the 

needs of e.g. police, border guards and rescue personnel as well. 

 
 

1. Introduction 

Tactical situational awareness for military applications should be based on infrastructure-free 

systems and should be able to form knowledge of the previously unknown environment. Lo-

calization of the soldier and formation of a map from the unknown environment are core of 

forming situational awareness. Also, information of the soldier’s motion context is important 

for successful operations, e.g. if the soldier is running, crawling or static for a long time. The 

motion information will give the command center invaluable information about the status at 

the field, the format of the information representation to the soldier may be changed to be 

less straining base on the situational awareness drawn from the motion context, and the fu-

sion algorithm may be developed to provide more accurate and reliable positioning infor-

mation when motion context is integrated into it. 

The infrastructure-free requirement is motivated by the fact that rescue and military person-

nel must be able to operate reliably in any environment, regardless of the available infra-

structure. Requirements for the system are stringent; it should function also in indoor envi-

ronments, which is at present the most challenging operation environment for localization 

methods, it should be lightweight and inexpensive. 

Simultaneous Localization and Mapping (SLAM) is a key technology for providing an accurate 

and reliable infrastructure-free solution for indoor situational awareness (Davison et al. 

2007). However, indoor environments and the requirements for the system make the im-

plementation of SLAM using existing algorithms challenging. Most existing algorithms were 

developed for use in robotics where size and weight requirements are not as stringent. Due 

to size limitations, we have implement SLAM using methods providing an accurate solution 

using a monocular camera (Ruotsalainen 2013), a result that has been unavailable before. 

Methods developed in INTACT will provide means for infrastructure-free tactical situational 

awareness. The methods consist of Particle filtering for multi-sensor fusion, a sophisticated 

SLAM algorithm and motion recognition means. Our approach was to integrate a monocular 

camera, multiple Self-contained Micro-Electro-Mechanical (MEMS) grade Inertial Measure-



    
  
  
  
  

 

 

 

 

ment Units (IMUs), a barometer and a ranging sensor to obtain a solution for SLAM, as well 

as tactical motion information. Also, a method using sonar for an improved map formation 

was developed. This report discusses the research done during the third research year and 

presents results from two proof-of-concept test campaigns. 

 

2. Research objectives and accomplishment plan 

Most important research questions were how an accurate and reliable SLAM solution may be 

obtained using a single camera, multiple inertial sensors and ranging equipment, and how 

good situational awareness the equipment provides. During the first two years the research 

concentrated on the development of fusion algorithm, machine learning algorithms for im-

proved context recognition as well as a SLAM algorithm based on (Civera et al. 2010) inte-

grating vision-aided algorithms developed earlier at FGI (Ruotsalainen 2013) for improved 

performance of the SLAM solution.  

During the third research year the methods were evaluated via two proof-of-concept test 

campaigns committed in Utti military area by soldiers. The results of the first campaign, 

done in February, were analyzed and the methods further developed accordingly. The second 

test campaign was committed in September and its good results give encouraging proof of 

the usability of the methods for infrastructure-free tactical situational awareness. The project 

formalized also recommendations for the future system implementation. 

 

3. Materials and methods 

This section discusses the materials used in the research and the methods developed in IN-

TACT. 

 

3.1 MULTI-SENSOR FUSION 

A Particle filtering algorithm has been developed in INTACT in order to fuse all sensor meas-

urements for an accurate and reliable solution. The multi-sensor fusion results are discussed 

in the Results and discussion section. 

 

3.1.1 Horizontal localization 

The horizontal localization relies on inertial and visual measurements. One of the inertial 

measurement units is mounted onto the shoe of the user. Although this is somewhat difficult 

to implement from the instrumentation point of view, the indispensable benefit is that the 

shoe is known to be periodically at rest during human gait, and these stance phases can be 

detected from the sensor output. This makes it possible to evaluate the traditional strapdown 

inertial navigation equations to estimate the movement of the foot at centimeter-level preci-

sion: the rapid error accumulation characteristic to low-cost inertial navigation systems can 

be mitigated by resetting the velocity to zero whenever the foot is detected to be stationary. 

Foot-mounted inertial navigation does not require user-specific calibration, and it inherently 

copes with sidestepping and climbing. 

The concept of visual gyroscope and visual odometer (Ruotsalainen 2013), providing the us-

er displacement and direction information, were used as another sources of horizontal locali-

zation information. In order to fuse the measurements for the best final result, the errors 

arising from measuring were modelled statistically. Then, inertial and visual measurements 

were fused using a Particle filter (Liu, 2001) incorporating the correct error models. 

 



    
  
  
  
  

 

 

 

 

3.1.2 Vertical localization 

Determining the altitude based on inertial measurements only is prone to drift due to meas-

urement errors and inaccurate knowledge of the local gravitational acceleration. Therefore, 

we employ a barometer providing the user vertical position component based on the change 

in the air pressure. However, barometer height measurements suffer from error arising from 

changes in the air temperature and pressure. Therefore, a sonar pointing downwards and 

detecting if the change in the height computed by the barometer is really due to the change 

in height and not the environmental changes is used.  

A Kalman filter was developed to fuse the barometer and sonar measurements before enter-

ing the height into the Particle filter. The Kalman filter state model consists of true height, 

height bias (caused by environmental effects) and vertical speed estimated by sonar. Figure 

1 compares the fused result of barometric height and sonar observations to the biased 

height. All measurements were averaged over one second. The bias is the difference be-

tween filtered and barometric height and it starts to increase when entering a building, likely 

because of different ventilation conditions. The method performs somewhat poorer than 

simple barometric height in stairs (400-480 seconds from start) but better overall. 

Largest bias in barometric height is caused by moving between indoor and outdoor environ-

ments. The Kalman filter approach able the system to adapt to different environments. The 

magnitude of bias can be used to estimate the change from one environment to other. 

 

Figure 1: Kalman filtered barometric height and sonar measurements compared to simple 

barometric height. Grey dashed line mark transition between outdoor and indoor environ-

ments. 

 

3.2 SITUATIONAL AWARENESS  

The knowledge of the soldier’s motion context is important for the localization algorithm, as 

well as for the tactical purposes. The main goal in the context recognition research in IN-

TACT has been to develop a method that can detect the user’s motion independently of the 

user’s personal motion characteristics, and to integrate the obtained information into the fu-

sion algorithm. Therefore we have experimented with various machine learning algorithms 

and used data from separate persons in order to find best methods for these purposes. The 

results are shown in Section 4. 

Building upon the work done in the previous years of INTACT, during the third year we have 

studied the different aspects of machine learning. We have studied feature selection from 

more algorithmic point of view, and also experimented with different pattern recognition 

methods to see which option would best suit this application. 

Previously 14 different motion categories (such as standing, walking, running, crouching, 

crawling, climbing, turning etc.) were identified. However, some of these motions proved to 

be difficult to distinguish or were not mutually exclusive. Therefore some of the categories 



    
  
  
  
  

 

 

 

 

 

were merged into one category, and some were left out. For instance, categories such as 

“rising from crouching to standing” or “getting down to crouching” were excluded from the 

algorithm development, since the duration of the transition from one motion to another is 

usually very short and can be deduced based on the change in the recognized motion. Thus 

the movement categories to be detected are walking, running, lying still, standing, climbing 

up, climbing down and moving forward in a low posture. 

In previous work means, variances, dominant frequencies and their amplitudes of the sensor 

readings were found to be useful features in context recognition. During the third year we 

used these same features, but studied the feature selection further by algorithmically looking 

for the best subset of these features. The reduction of the number of features is beneficial in 

terms of computational costs, but it also helps in avoiding overfitting the chosen classifier. 

 

3.3 MAPPING WITH A SONAR  

In addition to the knowledge of soldier’s location and motion context, information about the 

surroundings is important for tactical purposes. For this purpose, we have experimented de-

formation of a building plan using sonar ranging device. The map is produced on the move, 

and develops as the person moves around in the building. Figure 2 displays a suggestion for 

a representation of an indoor map. The sonar ranging device that was used measures the 

distance to the nearest object in the direction it is pointing to. In this experiment, the sensor 

is assumed to point perpendicularly right of the direction of the movement. The green lines 

with black dots in the end represent the range measurements, and green lines with no dots 

are measurements larger than the maximum possible measurement, 5 meters. The illustra-

tion presented here is from a simplistic experiment. 

 

Figure 2: Example of mapping an indoor corridor with sonar ranging device. 

 



    
  
  
  
  

 

 

 

 

 
4. Results and discussion 

During the third research year the methods developed in the project were tested in two 

proof-of-concept test campaigns in Utti. The first test campaign was carried out in February 

and best on the results the methods were further improved. The second test campaign was 

carried out in September and its results are shown below. 

 

4.1 PROOF-OF-CONCEPT  

Test campaigns were carried out in Utti military area’s exercise hall. The building had con-

fined hallways and small rooms and one larger space approximately 20 by 40 meters in size 

(Figure 3). Navigation tests consisted of traveling a route that started outdoors, went 

through all the rooms in the building and around the hall and included some climbing on 

steps or ladders. Test persons were two soldiers wearing combat equipment to simulate a 

realistic use situation. The sensors were attached to the combat west, helmet and footwear 

of the test person. Locations of the sensors are shown in Figure 4. 

The test persons walked the same route first at a slow pace and with no sudden movements 

and the second time faster with some running sprints and more natural movements.  

  

Figure 3: Confined hallway at the test site (on left) and interior of the exercise hall at the 

test site (on right). 

 

 

Figure 4: Sensor locations. 

 



    
  
  
  
  

 

 

 

 

 

4.1.1 Localization, UTTI 2 

Herein, horizontal localization result for the second UTTI test campaigns, and therefore the 

final result of the project, is shown in Figure 5 (left). Figure 5 shows also a rough true path 

of the test, drawn manually (on right). Due to the lack of a reference solution, the accuracy 

of the result is evaluated by measuring the error in the loop-closure, i.e. the deviation of the 

solution end point from the correct end point. The error was 2.5 m after the first round and 

4.6 m after the second round committed by running. Also, the error in the second round was 

caused mainly from the error in the starting heading that could be corrected by a mean 

providing absolute heading information.  

 

Figure 5: Horizontal localization result (on left) from UTTI test campaign, blue path done by 

walking and red by running. On right a rough sketch of the true path. 

 

4.1.2 Effect of a pressure shock to the height solution 

Effect of a pressure shock to sensors was tested by firing three practice cartridges. The ef-

fect is noticeable but does not cause a permanent bias in height measurement. Figure 6 

shows that the effect disappears quickly. The first cartridge was fired at 220 seconds of the 

test, the next one two second after, and the third one at 240 seconds. An extremely small 

effect was also observed in accelerometers but this had practically no effect on horizontal lo-

calization. 

 

Figure 6: Barometric height during the test when pressure shock causes disturbances to sen-

sors. 

 



    
  
  
  
  

 

 

 

 

4.1.3 Motion recognition 

The data used in these tests was gathered in Utti in February 2017. Amounts of the gathered 

training and test samples are presented in Table 1. We tested motion recognition using train-

ing data from one person, and test data from two different persons in order to test generali-

zability of the classification algorithms from person to person. We have experimented exten-

sively with different classification and feature selection algorithms. Here we present results 

of two different classifiers; RandomForest, which has been used for motion recognition in IN-

TACT before, and Naïve Multinomial Bayesian. These two classifiers produced the best out-

come of the experimented ones. The tests were done using Weka, an open source data min-

ing software. 

 

Motion 

category 

Training 

data 

Test 

data, 

person 

1 

Test 

data, 

person 

2 

Walking 53 35 32 

Running 39 39 65 

Crawling 37 - 33 

Crouching 40 35 22 

Lying 

down 

34 14 25 

Standing 79 2 15 

Climbing 

up 

20 4 14 

Climbing 

down 

17 4 14 

Table 1: Number of training and test samples for context recognition. 

 

239 different features were computed for each sample of motion. However, as the number of 

training instances (319) is not much higher than the number of features, the number of fea-

tures should be reduced as a one option in avoiding overfitting of the classifier. Overfitting 

usually leads to poor generalization of the classification algorithm. In RandomForest classifier 

this reduction comes naturally, as for each Random tree contributing to the final outcome a 

certain number of features is randomly chosen from all of the available features. For the 

Bayesian classifier we chose 75 most useful features based on each features worth in OneR 

classifier. These selected features contained readings from all sensors except sonar, thus 

verifying the previously obtained result that all sensors used for positioning contribute also 

to the motion recognition accuracy. The lack of sonar in these selected features may be due 

to the subideal direction of the sonar, resulting to measured distances larger than the capa-

bility of the sensor for most of the time. 

The total classification accuracy for RandomForest, when both the training and test data are 



    
  
  
  
  

 

 

 

 

produced by the same person, is 93.23 %. This supports the previously obtained result of 

RandomForest classifiers good performance in motion recognition. However, when the test 

data was produced by different person than the training data, the overall accuracy reduced 

to 67.27 %. Crawling was often mixed with Crouching, and Lying down with Crouching and 

Standing. Therefore it can be deduced that the personal movement styles affect especially 

the recognition of these motion categories. 

To improve the motion recognition in case of training data from different person than the fi-

nal user, we experimented different classifiers and resulted in Naïve Bayesian Multinomial 

classifier. First, we replaced the possibly missing values with mean value of corresponding 

feature in the training data. Then, we scaled all of the feature values to range from 0 to 1 in 

order to prevent features with higher numerical values from dominating the outcome. After 

that we performed the previously described feature selection process in order to obtain 75 

most relevant features. We also merged the Crawling and Crouching classes into “Moving 

forward in low posture”, as the preliminary tests had shown that these categories were still 

difficult to distinguish from each other. After these preprocessing steps we trained the 

Bayesian classifier. The results of the classification are displayed in Figure 7. The total classi-

fication accuracy is 85%, which is a significant improvement compared to the performance of 

the RandomForest, when training and test data were from different persons. When not trying 

to distinguish Crawling and Crouching from each other, Moving forward in low posture is rec-

ognized from the test data with 100% accuracy. Climbing up and Climbing down are still of-

ten mixed with each other, Standing and Walking. This may be due to the insufficient sonar 

measurements in this dataset. 

 

 

 

 

 

 

 

 

 

 

Figure 7: Context recognition results using Naive Bayesian Multinomial classifier and test da-

ta produced by different person than the training data was produced by. 

 

4.2 RECOMMENDATIONS FOR THE FUTURE IMPLEMENTATION  

4.2.1  Strengths, Weaknesses, Opportunities, and Threats 

The main strengths of the infrastructure-free tactical situational awareness system is its wide 

applicability without prior preparation of the operating environment. However, the relative 

nature of the observations cause the performance to degrade over time, and the absolute 

heading (with respect to North) is difficult to determine. However, the system could be inte-

grated with other sources of information, and ideally the various sensors would be integrated 

to existing equipment carried by the soldiers. The most significant threat is expected to be 

the harsh operating conditions, posing strict requirements on the impact protection of the 

equipment. 



    
  
  
  
  

 

 

 

 

Strengths: 

• Applicability in variety of environ-

ments 

• Rapid deployment, no onsite prepa-

ration 

• Resilient to jamming and spoofing 

• Demonstrated with low-cost hardwa-

re 

• Can accommodate information from 

other sensors/sources as well 

Weaknesses: 

• Performance degrades over time in 

absence of absolute position infor-

mation 

• Many sensors mounted at various 

parts of the body are needed 

• Difficult to determine the absolute 

heading when indoors 

• Co-operative radio ranging requires 

a high transmit power indoors 

Opportunities: 

• Integration with other systems 

• Smart clothing and related technolo-

gy to ease installation 

• Advances in sensor technology yield-

ing better performance 

• Co-operative (networked) positioning 

can implement communications 

Threats: 

• Users may ignore possible require-

ments on calibration 

• Extreme use conditions causing 

physical damage to components 

 

4.2.2 Communication requirements  

The transfer of information between soldiers is most convenient using a wireless radio signal. 

Despite the signal (WLAN, Bluetooth, Ultra-Wideband), to avoid congestion in communica-

tions one should only transmit the necessary information, especially when the size of the 

network is large. Therefore, the situational awareness solution should be computed locally 

and only the end result transmitted with adaptive transmission pace depending on the re-

spective need. The channel access method, such as TDMA, ALOHA or some other, should be 

chosen carefully to meet the needs of the application. The wireless communications should 

also be encrypted to avoid leaking information to a hostile party. 

 

5. Conclusions 

The final results obtained during the two proof-of-concept tests assure that the methods se-

lected and developed in the project for infrastructure-free tactical situational awareness are 

feasible for the implementation of a functional system. Recommendations for future imple-

mentation were given in the report. 

 

6. Scientific publishing and other reports produced by the research project 

1) A paper describing the development of a monocular SLAM algorithm encompassing novel 

methods for observing the heading and translation of the user from images: 

Ruotsalainen L., Gröhn, S., Kirkko-Jaakkola M., Chen L., Guinness, R. and H. Kuusniemi 

(2015) “Monocular Visual SLAM for Tactical Situational Awareness”, In Proceedings of the 

IPIN, 13-16 October, Banff, Canada, 10.1109/IPIN.2015.7346957. 



    
  
  
  
  

 

 

 

 

 

2) Matine reports of the work done during the first two research years: 

Ruotsalainen L., Kirkko-Jaakkola M., Chen L., Gröhn, S., and Guinness, R. (2015) Infrastruc-

ture-free tactical situational awareness (INTACT). MATINE Summary Report, ISBN 978-951-

25-2755-7. 

Ruotsalainen L., Kirkko-Jaakkola M., Chen L., Gröhn, S., Guinness, R. and Vallet J. (2016) 

Infrastructure-free tactical situational awareness (INTACT). MATINE Summary Report, ISBN 

978-951-25-2840-0. 

3) A paper describing the development of a Particle filter algorithm for fusing measurements 

from a foot-mounted IMU, camera, barometer and sonar for an accurate 3D localization: 

Ruotsalainen L., Kirkko-Jaakkola M., Chen L., Gröhn, S., Guinness, R. and H. Kuusniemi 

(2016) “Multi-Sensor SLAM for Tactical Situational Awareness”, In Proceedings of the ION 

ITM, 26-28 January, Monterey, California. 

4) A paper discussing the research done on situational awareness, mainly on motion recog-

nition: 

Ruotsalainen L., Guinness R., Gröhn S., Chen L., Kirkko-Jaakkola M., and Kuusniemi H. 

(2016) Situational Awareness for Tactical Applications. In Proceedings of the ION GNSS+, 

12-16 September, Portland, Oregon. 

5)  journal paper discussing the goals and results of INTACT done during the first 1.5 re-

search years:  

Ruotsalainen, L., Chen, L., Kirkko-Jaakkola, M., Gröhn, S., and H. Kuusniemi (2016). INTACT 

– Towards infrastructure-free tactical situational awareness. European Journal of Navigation, 

Vol. 14, No. 4: 33-38. ISSN 1571-473-X. 

6) A journal paper discussing the future implementation of a method fusing the intact locali-

zation with Hyperspectral Lidar mapping and target recognition 

Kaasalainen S., Ruotsalainen L., Kirkko-Jaakkola M., Nevalainen O., and Hakala T (2017). 

Towards Multispectral, Multi-Sensor Indoor Positioning and Target Identification, IET Elec-

tronics Letters, DOI: 10.1049/el.2017.1473. 

Four journal papers will be submitted still during year 2017 and will therefore be added to 

the project’s publication list. 

 

7. Comment from the project steering group 

“INTACT project addressed the user needs for creating and maintaining independent and in-

frastructure-free situational awareness. The project introduced the status and suitability of 

the existing commercial technology for positioning and obtaining situational awareness. The 

development done during the project and results obtained using the developed methods 

were promising. The developed methods and the chosen implementations create a good ba-

sis for follow-up actions on the way towards providing situational awareness in situations 

where e.g. the use of satellite positioning is denied.”  

Maj. Mika Nuutinen, Finnish Defence Forces, Army Command 
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