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Abstract: The  objective  of  the  Intact-project  is  to  analyze  and  develop  methods  for
infrastructure–free simultaneous localization and mapping (SLAM) and context recognition for
tactical situational awareness. Most important research questions are how an accurate and
reliable  SLAM  system  may  be  obtained  using  a  single  camera,  multiple  inertial  sensors  and
ranging equipment, and how good situational awareness the equipment provides. All
measurements will be collected using only equipment attached to the user. Indoor
environments are selected as a specific research environment, because localization is most
challenging in those areas, but all results are well suited also for urban and for some extent for
all outdoor environments. The project addresses applications aimed for soldiers, but the
methods developed will serve the needs of e.g. police, border guards and rescue personnel as
well.

1. Introduction

Tactical situational awareness for military applications should be based on infrastructure-free
systems and should be able to form knowledge of the previously unknown environment.
Localization of the soldier and formation of a map from the unknown environment are core of
forming situational awareness. Also, information of the soldier’s motion context is important
for successful operations, e.g. if the soldier is running, crawling or static for a long time. The
motion information will give the command center invaluable information about the status at
the field, the format of the information representation to the soldier may be changed to be
less  straining  base  on  the  situational  awareness  drawn  from  the  motion  context,  and  the
fusion  algorithm  may  be  developed  to  provide  more  accurate  and  reliable  positioning
information when motion context is integrated into it.

The infrastructure-free requirement is motivated by the fact that rescue and military
personnel  must be able to operate reliably in any environment,  regardless of  the available
infrastructure.  Requirements for  the system are stringent; it  should function also in indoor
environments, which is at present the most challenging operation environment for
localization methods, it should be lightweight and inexpensive.

Simultaneous Localization and Mapping (SLAM) is a key technology for providing an accurate
and  reliable  infrastructure-free  solution  for  indoor  situational  awareness  (Davison  et  al.
2007).  However,  indoor  environments  and  the  requirements  for  the  system  make  the
implementation of SLAM using existing algorithms challenging. Most existing algorithms were
developed for use in robotics where size and weight requirements are not as stringent. Due
to size limitations, we have implement SLAM using methods providing an accurate solution
using a monocular camera (Ruotsalainen 2013), a result that has been unavailable before.

Intact will provide means for infrastructure-free tactical situational awareness by developing
Particle filtering for multi-sensor fusion, a sophisticated SLAM algorithm and motion
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recognition means. Our approach is to integrate a monocular camera, multiple Self-contained
Micro-Electro-Mechanical (MEMS) grade Inertial Measurement Units (IMUs), a barometer and
a ranging sensor to obtain a solution for SLAM, as well as tactical motion information.

2. Research objectives and accomplishment plan
Most important research questions are how an accurate and reliable SLAM solution may be
obtained using a single camera, multiple inertial sensors and ranging equipment, and how
good situational awareness the equipment provides. During the first research year the pro-
ject investigated individual positioning sensors and their performance. Also algorithms for
obtaining motion measurements (i.e. range, speed, height and heading) from foot-mounted
inertial sensor, barometer and sonar were implemented. Fusion algorithm is the core of mul-
ti-sensor positioning and therefore also the basis of a SLAM system. In first year two differ-
ent fusion algorithms were developed (Kalman and Particle filters) and tested for the pur-
pose. Based on the results Particle filtering was evaluated to be the most feasible method for
the tactical applications requiring non-linear user motion observed with sensor suffering from
non-Gaussian errors (Arulampalam et al.2002). Simultaneously, the development of machine
learning algorithms for improved context recognition as well as a SLAM algorithm based on
(Civera et al. 2010) was started, integrating vision-aided algorithms developed earlier at FGI
(Ruotsalainen 2013) for improved performance of the SLAM solution.

During the second research year the development of the fusion algorithm, SLAM, and context
recognition method were continued and deepened. The errors introduced by different sensors
were modelled, and the obtained statistical models will be used in the Particle filtering algo-
rithm for improved positioning performance. The SLAM algorithm was developed further by
first improving FGI’s visual positioning methods towards more robust performance and then
integrating them into the 1-point  Ransac SLAM (Civera et  al.  2010).  Motion context of  the
soldier is essential for accurate and reliable situational awareness. Command center is able
to get information about the soldier’s status from the motion context information, the display
of the soldier’s device may be adjusted based on the situational information drawn from the
motion context information, and the accuracy and reliability of the multi-sensor fusion result
will be improved by including the motion information into the algorithm. Therefore a thor-
ough study and analysis  of  the most feasible sensors,  features and machine learning algo-
rithms for motion recognition was done and the method was developed further during the
second research year. All developed methods were tested and the results analyzed frequent-
ly also during the second research year as described in this report.

3. Materials and methods

This section discusses the materials used in the research and the methods developed in In-
tact.

3.1 SLAM

Simultaneous Localization and Mapping (SLAM) means the capability of a user who is placed
in an unknown location in an unknown environment to be able to incrementally form a con-
sistent map of this environment and simultaneously determine his location within the map by
using probabilistic computation (Durrant-Whyte and Bailey, 2006). Feasible SLAM solutions
have been developed for robots. However, the requirements set for the equipment by the
dismounted soldiers and rescue personnel, i.e. size and cost, necessitate the development of
novel  algorithms.  Existing  methods  using  a  monocular  camera  and  MEMS  sensors  do  not
provide sufficient performance yet and therefore new methods are developed in Intact-
project. The 1-point Ransac SLAM algorithm developed by (Civera et al. 2010) has been used
as the base for the SLAM development, but in Intact it will be extensively improved.
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The concept of visual  gyroscope and visual  odometer (Ruotsalainen 2013) has been devel-
oped before at FGI providing measurements that will result in improved SLAM accuracy. Dur-
ing the first research year the methods were implemented into 1-point Ransac. In addition,
during the first year we have developed methods to be able to use a wide angle camera,
which provides much larger field of view. During the second research year this development
has been continued to the point that the SLAM algorithm is now ready to be fused with the
multi-sensor fusion algorithm. The methods developed are described below.

The Omnidirectional monocular 1-Point RANSAC Odometer algorithm inputs camera attitudes
computed using the visual gyroscope and corresponding image features from consecutive
images, and solves the translation using the visual odometer method. The input image fea-
ture pairs include many incorrect matches. These erroneous matches are discarded using the
RANSAC error processing algorithm. When the SLAM system is initialized using the method
described above, the computation is  continued using a Perspective-n-Point  (PnP) algorithm
(Kneip et al. 2014). The benefit of using PnP is that it solves camera’s pose with 6 degrees of
freedom (i.e. three dimensional position and three dimensional attitude) with respect to pro-
vided 3D points, unlike the Omnidirectional monocular 1-Point RANSAC Odometer which only
provides XY-translation.  However,  the map resulting from SLAM in Intact  will  be presented
using only two dimensional point representation, and the three dimensionality will be used to
improve the accuracy of the obtained localization. Figure 1 shows the features used for the
PnP processing.

3.2 MULTI-SENSOR FUSION

A Particle filtering algorithm has been developed in Intact in order to fuse all sensor meas-
urements for an accurate and reliable solution and will be discussed below. The multi-sensor
fusion results are discussed in the Results and discussion section.

3.4.1 Measurement models

This section gives a brief overview of the sensors (shown in Figure 2) and measurements
used for the multi-sensor fusion.

Self-contained sensors used for positioning provide information about the user motion, main-
ly translation and heading, or other phenomena useful for positioning purposes. When the
initial position and direction are known, a relative position solution may be obtained by prop-
agating the user position with the motion measurements. As mentioned above, the Intact
multi-sensor fusion solution consists of measurements from three IMUs, one attached to the
foot and used for positioning, one attached to the body and one to the helmet of the user,
the two latter being used mainly for motion recognition. In general, the quality of low-cost

Figure 1: Features used for PnP algorithm



0044 INTACT_Ruotsalainen_Summary_Report_final.doc

MEMS inertial sensors is inadequate for use in the above mechanization except for very short
periods of time. However, when the IMU is attached to the foot of the user, whenever the
IMU is detected to be at rest, namely during each steps, a zero-velocity update (ZUPT) may
be applied to the error-state filter and improved performance obtained.

A camera can be considered as an additional self-contained sensor
when integrated to a navigation system via specific mechanization.
When the camera is attached to the body (shoulder in Figure 2), mo-
tion of features in consecutive images provides enough information
for observing translation and heading of the user. Motion of the fea-
tures may be transformed into heading information in a straight for-
ward manner under favorable conditions and into translation by using
a special configuration, namely by attaching the camera into a known
height  and  tilted  a  bit  downwards  as  discussed  in  (Ruotsalainen
2013).

Determining the altitude based on inertial measurements only is
prone to drift due to measurement errors and inaccurate knowledge
of the local gravitational acceleration. Therefore, we employ a barom-
eter (on helmet in Figure 2) computing the user vertical position com-
ponent  using  the  information  about  the  change  in  the  air  pressure.
However, barometer height measurements suffer from changes in air
temperature and air pressure, not caused by the change of height but
some other phenomena. Therefore, a sonar (on hip in Figure 2) point-
ing downwards and detecting if the change in the height computed by
the barometer is really due to the change in height and not due to the
change in environmental features, is used for making the altitude es-
timation robust.

3.4.2 Particle Filter Based Navigation Method

Particle filtering is based on the Bayesian statistical theory and Monte Carlo (MC) simulation.
Particle filters provide a set of weighted MC samples of the state at each time instant (Liu,
2001). These samples are called particles. Particle filtering estimates the state of the system

kx at the time kt  based on all measurements up to that time (Gelman et al. 2000, Thrun et
al. 2005). In Intact we compute the user’s three dimensional position, and therefore the sys-
tem state consists of the position components (horizontal X and Y, vertical Z) as well as the
heading (h), namely [ ]hZYXxk = . Traditional fusion algorithms have assumed that the
user motion is linear and all measurement errors have Gaussian distribution, which is seldom
true in navigation and definitely not true in tactical applications. Therefore, heavy lineariza-
tion has been done to enable the use of fusion algorithms causing inaccurate position solu-
tion. Particle filtering is an estimation method developed to process nonlinear measurements
with non-Gaussian error models. Particle filtering algorithm considers the actual measure-
ment error models when sampling the particles and therefore provides improved positioning
accuracy.

During the second research year errors of the methods forming the core of the position solu-
tion,  namely  the  foot-mounted  IMU,  the  visual  gyroscope  and  the  visual  odometer  were
modelled and will be further incorporated into the fusion algorithm. Results of the error mod-
eling will be presented in the section 4.

Figure 2: Sensors used for infra-structure-
free tactical situational awareness
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3.5 SITUATIONAL AWARENESS

As  discussed  above,  an  important  part  of  obtaining  tactical  situational  awareness  is  the
knowledge of the soldier’s motion context. The main goal of the context research in Intact is
to develop classifiers that are able to detect the user motion independently of the user’s mo-
tion characteristics, resulting in user independent and therefore scalable method, and to in-
tegrate the obtained information into the fusion algorithm.

To achieve the goal, during the second research year we have studied the three main as-
pects affecting the formation of user independent classifiers for motion recognition. Namely,
we have investigated the best set of sensors used for collecting the measurements, keeping
in focus the fact that a good balance between the accuracy and the amount of sensors has to
be found in order not to disturb the actual tactical operations. We have also studied the best
set of features representing the data and used for motion classification, and the best ma-
chine learning algorithm for performing the actual classification.

Through discussions with the professionals at the tactical domain, we have identified 14 mo-
tion patterns to be detected; standing, walking, running, moving forward in crouching pose,
crawling, turning, ascending stairs, descending stairs, getting down to crouching, staying
static at crouching pose, rising from crouching to standing, getting down from standing to
crawling pose, rising from crawling to standing and jumping.

Selection of a set of features, derived from various sensor measurements that capture infor-
mation about the various motion contexts is one of the most crucial steps for motion recog-
nition. The used features have to be justified to suit the challenging application area because
their usage consumes resources, such as power and memory, and the large amount and ob-
trusive locations of sensors may disturb the tactical operations. The motions relevant for the
applications presented above involve varying physical phenomena, e.g. large horizontal ac-
celerations (crawling), large vertical accelerations (jumping), and large heading changes
(turning). However, when the goal is a real-time application, a balance between the number
of different features used and computational cost has to be found. In some cases, features
may be useful for classification but computationally expensive to generate. We have followed
the work of Frank et al. (2010) and Pei et al. (2010) for selecting the features. The features
we investigated were means, variances and dominant frequencies of the computed motion
measurements.

Machine  learning  (ML),  also  known  as  pattern  recognition,  is  the  tool  we  have  chosen  for
obtaining  situational  awareness  by  classifying  the  different  motion  states  using  classifiers
learned from training data. During the second research year we have studied the perfor-
mance of various ML algorithms from the point of view of their classification accuracy and
computational demands. The results are shown in Section 4.

4. Results and discussion

This section discusses the results obtained by processing the data collected in various data
campaigns and processed by algorithms developed in the Intact-project. The equipment used
for  data  collection  were  a  GoPro  camera,  XSENS Inertial  Navigation  Sensor  unit  (IMU and
barometer), two Osmium MIMU22BT IMUs, one attached to the foot and the other one to the
body of the user, and a HRUSB-MaxSonar sonar for ranging. All accuracy values presented in
the report are obtained by comparing the position solution computed with methods devel-
oped in Intact to the ground truth. The ground truth is computed using a Novatel SPAN sys-
tem containing a dual-frequency GPS receiver and a tactical grade Honeywell’s HG1700 IMU
(Novatel webpages) and providing a solution with decimeter level accuracy.
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4.1 INTEGRATION ALGORITHMS

This section discusses the results  of  the error modelling and shows the fusion result  using
the Particle filtering algorithm at its present state.

When the Particle filter integration algorithm is used for multi-sensor fusion with Gaussian
error models, the position mean position error during a route with a length of around 200m
was 1.88 m with a standard deviation of 3.19 m. The result, shown in Figure 3, is feasible for
indoor positioning, however it was obtained during one experiment and relatively smooth
motion. Therefore, the next step of the fusion research is to include the obtained more real-
istic error models into the Particle filtering algorithm.

              Figure 3. Particle filtering result

The errors arising when using the foot-mounted IMUs and the visual gyroscope and visual
odometer were modelled by collecting many set of data during data campaigns and by com-
paring the obtained results to the ground truth. Figure 4 shows the modelling result for the
foot-mounted IMU measurements. Figure on left shows the route walked and measured us-
ing the SPAN reference system (with red) and the solution computed using foot-mounted
IMU (blue). The obtained position solution is deviated due to the measurement errors. The
errors are plotted using a histogram and shown in figure on right. Two probability distribu-
tion functions are fitted to the errors, Gaussian and Student-t. As may be seen from the fig-
ure,  Student-t  distribution fits  the error distribution better,  and the parameters were com-
puted to be mean -1.495 meters and standard deviation of 6.883 meters.  Similar computa-
tions were made to the visual methods.
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Figure 4. Error modelling result for foot-mounted IMU

4.2 Context recognition

Here we present the results from the extensive motion recognition research done for identi-
fying the best set of sensors and features as well as the best Machine learning algorithm to
be used for motion recognition. The classification results are summarized in Figure 5.

The overall accuracy of the classification with this setup was 78.2 % (percentage of correctly
classified instances). The main motions, even more unusual ones like crawling, are well de-
tected from the data, namely the detection accuracy for crawling was 100% for the data col-
lected during the tests. However, motions like jumping and getting up from the crawling and
crouching poses are often confused with other motions. The reason for this is that the data
available for training the classifiers to detect these motion patterns were too few in these
data sets. Table 1 shows the appearance of different motions in the data. Also, there are
some motions in the data that are not mutually exclusive, like turning that can happen while
also walking or running. Classification for these motions resulted in confusion decreasing also
the overall accuracy. In the future research, we will join similar transition motions to form
one class and therefore contribute better for the classification procedure.
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The results showed also that having three IMUs, namely the first attached to the user body,
the second to the foot, and the third to the helmet, will bring more information and therefore
accuracy for the classification. We also studied the best combination of other sensors, meas-
urements, and features used for detecting the contexts and found out that removing any of
the sensors used in the data collection decreased the classification accuracy. The only fea-
ture not contributing to the classification accuracy was the “Mean of heading change”.

We compared the performance of several different ML algorithms for learning the classifiers.
Results showed that the decision-tree based algorithm RandomForest outperformed all other
tested algorithms using default parameters. In the future the research will continue on form-
ing the relevant motion classes and the classification accuracy is anticipated to improve.

Figure 5: Classification accuracy in percent for different motions, horizontally the detected motion and
vertically the correct motion pattern. Note that some classes have been left out of this table because of
only few occurrences in the data, causing some of the lines not to sum up to 100 %.

Table 1 Appearance of different motions

Motion Instances
in data [s]

Walking 73
Standing 53
Turning 29
Ascending stairs 26
Descending stairs 21
Running 18
Crawling 16
Staying static at
crouching pose

13

Moving forward in
crouching pose

10

Rising from crouching
to standing

6

Getting down to
crouching

5

Rising from crawling
to standing

3

Getting down from
standing to crawling
pose

1

Jumping 1
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5. Conclusions
The results obtained during the second research year assure that the methods selected to be
developed for infrastructure-free tactical situational awareness, are the most feasible ones
for the purpose. However, there is still a need to develop the fusion of all measurements and
methods into one adaptive system, for providing reliable and accurate solutions for all situa-
tions and environments.

In order to finally obtain infrastructure-free, accurate and reliable tactical situational aware-
ness,  all  methods developed so fast  should be integrated into one system. Therefore,  next
steps in the research will be the incorporation of the error models into the fusion algorithm
and  integration  of  the  Particle  filtering  and  SLAM  algorithms.  Also  the  motion  recognition
classifier will be integrated into the fusion algorithm in order to obtain an adaptive, accurate
and reliable system.

Finally, when the performance of the developed system is sufficient, a proof-of-concept test-
ing in a more realistic and challenging operation environment, taking into consideration also
e.g.  changes in temperature and pressure conditions,  should be made. Also constrains and
possibilities for implementation of the methods into a real operational system should be dis-
cussed in the future.

6. Scientific publishing and other reports produced by the research project

1) A paper describing the development of a monocular SLAM algorithm encompassing novel
methods for observing the heading and translation of the user from images:

Ruotsalainen L., Gröhn, S., Kirkko-Jaakkola M., Chen L., Guinness, R. and H. Kuusniemi
(2015) “Monocular Visual SLAM for Tactical Situational Awareness”, In Proceedings of the
IPIN, 13-16 October, Banff, Canada, 10.1109/IPIN.2015.7346957.

2) Matine report of the work done during the first research year:

Ruotsalainen L., Kirkko-Jaakkola M., Chen L., Gröhn, S., and Guinness, R. (2015) Infrastruc-
ture-free tactical situational awareness (INTACT). MATINE Summary Report, ISBN 978-951-
25-2755-7.

3) A paper describing the development of a Particle filter algorithm for fusing measurements
from a foot-mounted IMU, camera, barometer and sonar for an accurate 3D localization:

Ruotsalainen L., Kirkko-Jaakkola M., Chen L., Gröhn, S., Guinness, R. and H. Kuusniemi
(2016) “Multi-Sensor SLAM for Tactical Situational Awareness”, In Proceedings of the ION
ITM, 26-28 January, Monterey, California, submitted.

4) A paper discussing the research done on situational awareness, mainly on motion recog-
nition:

Ruotsalainen L., Guinness R., Gröhn S., Chen L., Kirkko-Jaakkola M., and Kuusniemi H.
(2016) Situational Awareness for Tactical Applications. In Proceedings of the ION GNSS+,
12-16 September, Portland, Oregon.

5) A journal paper discussing the goals and results of Intact done during the first 1.5 re-
search years:

Ruotsalainen, L., Chen, L., Kirkko-Jaakkola, M., Gröhn, S., and H. Kuusniemi (2016). INTACT
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