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Why study scattering from a sphere of nonlinear
material?

Nonlinearity generates harmonics

How much energy is shifted from the fundamental frequency to
the harmonics?
Type of nonlinearity used: that of a pn-junction (exp. function)

A real material; it has the most extreme nonlinearity possible
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Why study scattering from a sphere of nonlinear
material?

Why sphere?
it is a canonical benchmark whose radar cross-section (RCS) is
well known (Mie scattering)

Can nonlinear materials be exploited in stealth technology?
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Model of the problem to be simulated

Problem is simulated using the FDTD method

green region: plane wave source (TFSF region)

yellow surface: Huygens surface

grey surface: computational space terminated in
CPML
sphere of nonlinear material

The Huygens surface is required to obtain the far field
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Modelling the nonlinear material
Modelling a lumped element in FDTD

Il(Vl)Vl
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Lumped elements can be directed only in the direction of the primary axes
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Modelling the nonlinear material
Modelling a diode spanning one or many Yee cells

Diode current-voltage equation: Id = Is

(
eαVd − 1

)
, α = q/(kT)

Diode voltage Vd:
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Compute Id and plug in Il = −Id via the update equations in the
column of cells in which it exists
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Sphere of nonlinear material

Sphere is filled with z-directed diodes

A diode current passes through every Yee cell within the sphere
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Encountered problems and work-arounds

The presence of many diodes in close proximity makes the
simulation susceptible to instability

the material is strongly nonlinear

The time step may have to be reduced from the largest possible
step obtained via the Courant-Friedrichs-Lewy condition
The plane-wave amplitude cannot be arbitarily large

the strong nonlinearity in the current-voltage dependence causes
instability

the larger the field strength, the larger the voltage implying larger
changes in current even for relatively small changes in the large
voltage
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Simulations
Different spheres are simulated for

wavelength much larger than the sphere
wavelength of similar size as the sphere

Simulation parameters

Grid size: 120× 120× 120
Discretisation: ∆x = ∆y = ∆z = 0.5 mm,
time step damping factor: 0.5⇒ ∆t = 0.963 ps

Plane wave propagates along x-axis with amplitude 5000 V/m

Diode saturation current: 1 pA (typical value for a silicon diode)

Sphere diameter: 32 mm (64 cells at equatorial plane)

Scattered-field observation point: 15,60,60 (between CPML and
the Huygens surface)
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Simulations: first a PEC sphere
Case 1a: f = 1 GHz, λ ≈ 300 mm, time steps n = 16 384

The plane-wave frequency is obvious.
The model errors are also obvious

the error can be reduced but not eliminated by increasing n
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Simulations: first a PEC sphere
Case 1a: f = 1 GHz, λ ≈ 300 mm (arbitrary scale)

RCSθ

RCSφ

f 2f 3f
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Simulations: diode sphere
Case 1b: f = 1 GHz, λ ≈ 300 mm, n = 16 384, εr = 1

A very strong DC component (for electromagnetic rectification) is
present
Harmonic peaks are distinguishable
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Simulations: diode sphere
Case 1b: f = 1 GHz, λ ≈ 300 mm, εr = 1 (arbitrary scale)

RCSθ

RCSφ

f 2f 3f

Scattering from a sphere of nonlinear material 14/25

Luis R.J. Costa MATINE seminar 18.11.2015
RAD department



Simulations: diode sphere
Case 1c: f = 1 GHz, λ ≈ 300 mm, n = 16 384, εr = 11.68

The fundamental frequency is clearly visible
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Simulations: diode sphere
Case 1c: f =1 GHz, λ≈300 mm, εr =11.68 (arbitrary scale)

RCSθ

RCSφ

f 2f 3f
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Simulations: again a PEC sphere
Case 2a: f = 10 GHz, λ ≈ 30 mm, n = 16 384

The plane-wave frequency and model error are obvious here too.
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Simulations: PEC sphere
Case 2a: f = 10 GHz, λ ≈ 30 mm (arbitrary scale)

RCSθ

RCSφ

f 2f 3f
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Simulations: diode sphere
Case 2b: f = 10 GHz, λ ≈ 30 mm, n = 16 834, εr = 1

A very strong DC component is present
The fundamental frequency and harmonics are visible
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Simulations: diode sphere
Case 2b: f = 10 GHz, λ ≈ 30 mm, εr = 1 (arbitrary scale)

RCSθ

RCSφ

f 2f 3f
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Simulations: diode sphere
Case 2c: f = 10 GHz, λ ≈ 30 mm, n = 16 834, εr = 11.68

The fundamental frequency is clearly visible
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Simulations: diode sphere
Case 2c: f =10 GHz, λ≈30 mm, εr =11.68 (arbitrary scale)

RCSθ

RCSφ

f 2f 3f
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What do the data tell us?
εr = 1

Harmonics are generated as expected, but they are weak
Charge accumulates at the nodes of the diodes since they have
no discharge path available

the scattered field stays positive in the back-scattered direction
a prominent DC component emerges in the spectra as a result

εr = 11.68
Effects of nonlinearity are no longer apparent

harmonics are not visible
The fundamental frequency is now significant

Other remarks
Several cycles of the plane wave are required for the
nonlinearities to kick in
A relatively wide modulated pulse is necessary for the
nonlinearities to have an effect
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What next?

Is it possible to arrange the diodes so as to enhance the effects
of nonlinearities?

Can the incident polarisation current be manipulated through a
suitable arrangement of the diodes?

Study how different pulses interact with spheres of such
nonlinear materials
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Conclusions

A model for a nonlinear material is successfully implemented and
used to compute scattering from a sphere made of a nonlinear
material
Simulation results show interesting behaviour in the sphere
modelled

harmonics are created, but not always

Energy is shifted primarily to DC, but to other frequencies as well

Application to stealth technology requires further study
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