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Abstract

The problem studied in this research is the passive estimation of the direction of arrival (DOA)
of several acoustic sources, using an array of sensors. The main application of this work is in
underwater passive surveillance. Our focus is on robust DOA estimation, where the positions of
the sensors are uncertain or affected by errors, with a known bound on the magnitude of the
uncertainties or errors. This is the typical case of an array towed by an unmanned underwater
vehicle (UUV). Moreover, we search estimation methods with low complexity, similar to that of
minimum variance distortion-less response (MVDR), due to the possible computing power limi-
tations of an UUV. We obtain such a DOA estimation method by posing the robust DOA prob-
lem such that the optimization is  performed in two stages.  First,  the problem is  relaxed and
the corresponding power estimation has an expression similar to that of standard beamform-
ing. If the relaxed solution does not satisfy the magnitude bound, an approximation is made by
projection.  Unlike other robust DOA methods,  no eigenvalue decomposition is  necessary and
the complexity is similar to that of MVDR. The basic method is described for sinusoidal sources
with known frequency and can be extended to the case of general sources by splitting the sen-
sor signals on frequency bands and then summing over frequencies or transforming on a single
frequency band. For low and medium SNR, the proposed method competes well with more
complex methods and is clearly better than MVDR.

1. Introduction

Using sensor arrays for the passive estimation of the direction of arrival (DOA) of under-
water sounds is an old technique, but new algorithms are proposed regularly for reformu-
lations of the basic problem. We investigate robust DOA estimation, where the positions
of the sensors are uncertain or affected by errors. This way of posing the problem is use-
ful in practice in several situations, for example for coping with calibration errors. Howev-
er,  the  most  typical  case  is  that  of  arrays  towed  by  an  unmanned  underwater  vehicle
(UUV), since the sensors are often not placed on a rigid frame and movement in water
induces variations of the relative positions of the sensors. It is commonly assumed that
the position errors have known magnitude bounds, which come from the geometry of the
physical array and from a study of its typical movement.

There are at  least  two general  ways of  enforcing robustness.  They operate through the
steering vectors that describe the relation between the geometry of the array and the po-
sition of a far-field source. In the robustness problem, the nominal steering vector that
corresponds to the assumed position of the sensors (or a “central” position, in case of
movement) is replaced by a set of vectors around the nominal one.

Worst-case robustness ensures an optimal beamforming quality for all these steering vec-
tors. Methods belonging to this category can be found, among others in [VGL03,LoBo05].
They  often  are  solved  using  convex  optimization,  see  for  example  [Gersh10].  The  ad-
vantage is that several efficient libraries are available for solving the problems. However,
the complexity is  often large,  despite the recent advances in convex optimization algo-



rithms. One can also argue that the approach may be too conservative. Aiming to ensure
good enough quality for all possible steering vectors flattens the peaks of the DOA spec-
trum and makes more difficult the estimation of the number of sources.

A second way of ensuring robustness is to find the steering vector in the vicinity of the
nominal one that maximizes the estimation of the power on the current direction, for the
data at hand. Examples of such approaches are [LSW03,LSW04]. This leads to less com-
plex methods and a sharper DOA spectrum. However, a possible drawback is a higher in-
fluence  of  the  noise  on  the  positions  of  the  peaks.  This  is  the  category  of  methods  to
which we contribute in this report.

There are also other types of methods, like the maximally robust Capon beamformer
[RuPe13]. The recent review [Voro13] lists several other methods.

All the above work is done for the narrowband case. The extension to wideband is simple
in principle and can be done with two methods. For both, the sensor signals are decom-
posed via DFT on frequency bands. The summation method independently estimates the
powers  for  the  desired  angles  and  then  sums  (or  averages)  the  results.  The  coherent
transformations method uses diagonal focusing matrices that, for each frequency band
and angle, project the sensor signals on a single central band; then, a unique covariance
matrix  is  obtained  and  a  narrowband  DOA  method  can  be  applied.  Despite  the  known
principle, only very recently robust wideband methods were investigated in [Soma13].

2.  Research objectives and accomplishment plan

The main objective was to find a robust DOA estimation method that has a complexity
similar to MVDR and performance similar to that of more complex methods, especially in
the practical conditions of low and medium SNR. The method should work for both nar-
row- and wideband sources.

3.  Materials and methods

The reference methods that we used for robust DOA estimation are robust Capon beam-
forming [LSW03], denoted here MVDR-R, and doubly constrained Capon beamforming
[LSW04], denoted here MVDR-DC. Both are designed for narrowband sources generating
sinusoidal  signals.  Both use an optimization criterion inspired from that of  the standard
MVDR, depending on a steering vector constrained to a set  around the nominal  vector.
Figure 1 depicts these sets for several methods. In MVDR-R, the steering vectors are in a
ball around the nominal one; the constant ρ defines the maximum allowable distance
from the nominal vector. However, since the optimization criterion is proportional to the
norm of the vectors, only the inner part of the ball is active, for vectors whose norm is
less than the norm of the nominal vector; this is shown in red in the figure. However,
since position errors should not change the norm of  a steering vector,  MVDR-DC works
with only the vectors with the same norm as the nominal  vector,  as shown in green in
Figure 1.

Both optimization problems can be solved with specialized procedures, based on the La-
grange multiplier approach, that need only finding the unique solution of a nonlinear
equation with a single variable. However, the eigenvalue decomposition of the empirical
covariance matrix of the sensor signals is necessary. So, the complexity is clearly higher
than that of MVDR. This is especially true in the wideband case, where many eigenvalue
decompositions are used, one for each frequency band (in the summation method) and
one for each angle (in the transformation method).



MVDR-R  and  MVDR-DC  give  much  better  DOA  estimations  than  MVDR,  usually  with  a
slight advantage for MVDR-DC.

Figure 1 Sets of steering vectors considered by the optimization problem in MVDR-R (red), MVDR-DC
(green) and our RAB method (blue).

Our  proposed  method,  named  robust  adjusted  beamforming  (RAB)  due  to  the  resem-
blance of its initial DOA estimation to that produced by the standard beamforming, allows
the steering vectors to lie on a hyperplane orthogonal on the nominal vector, respecting
also the distance constraint. In Figure 1, this set is represented in blue. This is the near-
est convex problem to that used in MVDR-DC (which is not convex). However, this is not
its main advantage.

The RAB method has two steps:

1. The optimization problem is solved in a relaxed version, without the bound constraint;
the steering vectors can lie on the whole hyperplane. The solution can be found analyti-
cally and implies only a matrix-vector multiplication and some less complex operations. If
the bound constraint is satisfied, then the optimal DOA estimation is easily found; a norm
correction is implicitly applied (such that the obtained vector has the same norm as the
nominal one).

2. If the bound constraint is not satisfied, then we compute a projection of the obtained
steering vector towards the nominal vector, such that the bound constraint is satisfied.
With the projected vector, we compute an MVDR-like DOA estimation. This implies com-
puting the inverse of the sensor signals covariance matrix, an operation that is necessary
for all the other algorithms in the MVDR family.

So, the overall computation costs are only slightly higher than for MVDR. This remark ap-
plies also for the wideband case.

In the wideband case, a particular problem is the choice of the bound ρ for the different
frequency bands, see [Soma13] for a discussion. We chose a linear dependence with fre-
quency; the user has to give a single bound value,  for  the Nyquist  frequency (this  de-
pends on the maximum magnitude of the possible variations of the sensor positions). For
the other frequencies, the bound is thus automatically computed.

4. Results and discussion

The methods have been tested via simulations; we give here only a few representative



results. We consider  a  uniform linear  array  (ULA)  with N=12 sensors; the  distance  be-
tween two consecutive sensors is d=0.25 m. We assume an underwater DOA problem,
the speed of sound being 1450 m/s. The sampling frequency is 8 KHz.

Since we assume that the actual sensor positions are uncertain, we perturbe the nominal
ULA positions with white Gaussian noise with standard deviation 0.2 d, on both coordi-
nates. Using these values, it results that in the worst-case, when the displacement is or-
thogonal on the direction of a source, the modification of the squared norm of the steer-
ing  vector  is  about  0.18 N.  We  chose  the  covering  value ρ=0.3 N for the robustness
bound.

Besides the described methods, we also give the results of the “oracle” MVDR, denoted
MVDR-O, which is  fed with the exact  sensor positions.  All  the other methods work with
the nominal positions.

Narrowband results. We simulate three sources, whose DOAs are 50, 100 and 130 de-
grees and whose amplitudes are 2, 1, 3, respectively. Their frequency is 2000 Hz.

RAB has the following typical behavior. In the vicinity of the true DOAs, the solution ob-
tained at step 1 is valid, hence there is no need for further search. In the other, less rele-
vant  directions,  the  solution  is  no  longer  valid,  hence  the  approximation  described  by
step 2 has to be computed. This behavior is especially seen for medium and low SNR and
an example is shown in Figure 2, for an SNR of 10 dB. One can see that RAB, MVDR-R
and  MVDR-DC give  quite  similar  estimations,  consistent  with  those  of  MVDR-O,  despite
the significantly lower complexity of RAB. The peaks of the robust methods are wider,
and so the ability  to separate close sources is  diminished, but this  is  a natural  price to
pay. The standard MVDR can still give fairly good DOA estimation, but the powers of the
sources are badly estimated. For lower SNR this relative behavior is somewhat similar,
although the differences between the methods are smaller, due to the prevalence of the
sensor measurement noise over the "noise" due to unknown sensor positions. However,
robust methods are clearly better than standard MVDR.

When the SNR is high (more than 20 dB), RAB starts misestimating some peaks of the
power. Its estimation quality may become lower than that of MVDR-R or MVDR-DC, but
RAB is still better than MVDR.

Figure 2 Typical DOA estimations in the narrowband case, SNR=10 dB.



Wideband results. We simulated two sources corresponding to AR processes whose spec-
trum is decaying as frequency grows, as common for ships, see [Hel13] for details. They
are situated at angles 50 and 90 and their amplitudes are 2 and 1, respectively. We use
an  FFT  of  size  128  and  62  snapshots  per  frame,  which  means  about  one  second  per
frame. We use the frequency bands from 500 to 3000 Hz; low frequencies are avoided for
their low potential of discrimination and high frequencies for their noisy character. The
central frequency for the transformation method is 2000 Hz.

The results of the summation and transformation methods are similar, so we report re-
sults only for the former. Figures 3 and 4 give examples of power estimation for a single
frame, at SNRs of 10 and 0 dB, respectively. Again, the robust methods give better esti-
mates  of  the  relative  amplitudes  of  the  peaks  and  are  close  to  MVDR-O.  RAB  appears
quite  reliable  and  gives  good  estimates  at  a  cost  significantly  lower  than  MVDR-R  or
MVDR-DC.

Figure 3. Wideband sources, SNR=10dB.

Figure 4 Wideband sources, SNR=0dB.



[VGL03] S.A. Vorobyov, A.B. Gershman, and Z.Q. Luo, “Robust Adaptive Beamforming Us-
ing Worst-Case Performance Optimization: A Solution to the Signal Mismatch Prob-
lem,”IEEE Trans. Signal Proc., vol. 51, no. 2, pp. 313–324, Feb. 2003.

5. Conclusions

We studied robust DOA methods for arrays whose sensors positions are affected by er-
rors. In this case, robust methods give better estimations than standard MVDR, usually
with a higher computational complexity. We have proposed a new robust method, called
RAB (robust adjusted beamforming), based on an optimization problem that is slightly
different from other MVDR-inspired methods, like robust or doubly constrained Capon
beamforming. Unlike the other optimization problems, ours allows an easy-to-compute
approximate solution, with a cost similar to that of MVDR. Simulations with narrow- and
wideband sources show that RAB performs similarly to other robust methods at low and
medium SNR, despite its lower complexity.

6. Scientific publishing and other reports produced by the research project

The following publication was submitted:

B. Dumitrescu, C.Rusu, I. Tabus, J. Astola, Low-complexity robust DOA estimation, sub-
mitted at ICASSP 2015.
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