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Abstract
The major weakness of any wireless communication system is the ease of intercepting or
jamming  radio  signals,  which  increases  the  risk  of  using  or  altering  radio  signals  by
unauthorized persons or prevents the usability of a communication system. The possibility of
creating secure communications links impervious to threats and external attacks by exploiting
light  orbital  angular  momentum  (OAM)  has  already  been  recognized  by  Defense  Advanced
Research  Projects  Agency.  In  this  work,  we  study  possibility  of  creating  secure  links  using
OAM-based radio transmission. We analyze the process of generating and receiving OAM wave
modes  by  using  the  theory  of  spherical  wave  functions  with  special  emphasis  on  antenna
location perturbations. We also develop methods to transmit and receive OAM wave modes by
using phase mode excitation in circular antenna arrays. We demonstrate that mutual
orthogonality of OAM wave modes is extremely sensitive to misalignments of the transmitter
and/or the receiver and multipath propagation which can be exploited to set up point-to-point
secure radio links.

1. Introduction

The broadcast nature of the wireless communication medium makes it hard to eliminate
unauthorized access to wireless networks. For that reason, it is relatively easy to eavesdrop
on wireless interfaces in general. Moreover, in wireless networks, the risk of using or altering
radio signals by unauthorized persons or preventing the usability of a communication system
is significantly higher than in wired networks. In conventional military communication
systems, the protection of own information is usually achieved by obscuring the information
transmission using cryptography, special modulation schemes such as spread-spectrum
modulation, or both.

Transmissions techniques using so-called light orbital angular momentum wave modes were
studied in detail in [Allen et al. 1992] and are rather well established, both in free-space and
fibre optical communications. Generation, transformation, and measurement of the orbital
angular momentum of millimeter-wave were studied in [Brand 1998] and WiFi band in
[Mohammadi et al. 2010]. In scientific literature, operation of radio links using OAM wave
modes have been reported at the frequencies of 2.4 GHz, 10 GHz, 17 GHz, 29 GHz, 60 GHz,
and 100 GHz over distances up to 440 m.

The  possibility  of  creating  highly  secure  communications  links  impervious  to  threats  and
external  attacks  by  exploiting  light  orbital  angular  momentum  (OAM)  has  already  been
recognized by Defense Advanced Research Projects Agency (DARPA). In 2011, DARPA funded
research efforts related to secure communication using optical vortices. The researchers were
to  investigate  the  properties  of  light  beams  carrying  OAM  in  optical  fibers  and  their
applicability to creating next generation secure encryption links, by encoding information in
different OAM states.

mailto:aarne.mammela@vtt.fi


In [Linturi et al. 2013], OAM-based transmission in radio frequency bands has recently been
recognized as one of the 100 most important future technologies for Finland.

2. Research objectives and accomplishment plan

In  this  work,  we  study  the  applicability  of  the  transmission  technique  that  exploits  orbital
angular momentum (OAM) state of a radio beam to securely transmit information in wireless
military systems. The main objectives of this research are: 1) to exploit the characteristics of
signals transmitted using OAM-based radio techniques and identify the military
communication  systems,  where  OAM-based  radio  techniques  can  be  implemented,  2)  to
examine possible limitations of the theory of OAM-based radio transmission suggested by the
theory based on spherical wave functions, 3) to carry out theoretical and simulation based
performance evaluation of OAM-based radio wave generation and reception techniques, taking
into account realistic radio-electrical environments and relevant propagation parameters.
Develop suitable algorithms, 4) demonstrate by simulations the jamming resilience and
difficulty of intercepting the signal transmitted with selected OAM-based radio techniques.

In the first  phase,  executed in the year 2013, the general  properties of  OAM-carrying radio
beams were studied. In the second phase, executed in the year 2014, new radio transmission
schemes were developed. In almost all publicly reported experiments with OAM wave modes,
a specially crafted parabolic antenna, also known as spiral-phase-plate antenna, was used. In
this work, we develop alternative ways to generate and receive radio beams carrying OAM
using circular antenna arrays. New signal processing algorithms for controlling antenna arrays
are developed.

Finally,  in  the  third  phase  to  be  executed  in  the  year  2015,  the  high-level  algorithm
simulations will be made in MATLAB and commercial electromagnetic field simulation
software.  Visualization  tools  will  be  developed  to  help  to  understand  the  properties  of  the
radio  beams  carrying  OAM  as  well  as  generation,  reception,  detection,  and  interception  of
those radio beams.
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3. Materials and methods

3.1. Overview

Two different methods were used in the analysis. The first method is based on the theory of
spherical wave functions and the singular value decomposition. The second method is based
on numerical electromagnetic simulations by using an in-house integral equation solver.
These two methods are shortly described in the reminder of this Section.

3.2. Free-space radio link explained by spherical wave functions

Consider a free-space radio link consisting of a transmitter and a receiver as shown in Fig. 1.
The electromagnetic field ۳ radiated by the transmitter can be expressed by an expansion

where ߱ is the angular frequency of oscillation, is ܚ  a  position  in  space, is ߟ  the  wave
impedance in free-space, ܿ is  the  speed  of  light, ܽ௟,௠,௡ are expansion coefficients, Ψ௟,௠,௡

୭୳୲  are
outgoing spherical vector wave functions, and ܰ୲୶ is the highest order of the wave functions in
the expansion. The same field in the vicinity of the receiver can be expressed by an expansion
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Figure 1. Free-space radio link described by spherical wave functions.

where ,is a vector from the transmitter to the receiver ܌ ܾ௟,௠,௡ are expansion coefficients, Ψ௟,௠,௡
୰ୣ୥

are regular spherical vector wave functions, and ܰ୰୶ is the highest order of the wave functions
in the expansion. The above vector spherical wave functions are formulated as

where ,௟ is a spherical Hankel or Bessel function, depending on the type of the wave functionݖ
and തܲ௟௠ is a normalised Legendre function.

The expansion coefficients are related as

where ܽ is a vector consisting of the expansion coefficients ௝ܽ, 	ܾ is a vector consisting of the
expansion coefficients ௝ܾ, and ܶ is  called  a  translation  matrix.  Matrix 	ܶ serves also as a
channel matrix for the spherical wave modes from the transmitter to the receiver.

As any matrix, 	ܶ has a singular value decomposition

where 	ܷ and 	ܸ are  unitary  matrices  and 	Σ is  a  diagonal  matrix.  The  singular  value
decomposition arranges ܶ in orthogonal channels:

Above, each column of ܸ gives  expansion  coefficients  for  the  radiation  mode  of  one
orthogonal channel. Similarly, each column of 	ܷ gives expansion coefficients for the reception



Figure 2. Radiation modes of the first ten orthogonal channels: one of the modes 1–2 in the upper-left plot,
one of the modes 3–6 in the upper-right plot, and one of the modes 7–10 in the lower-left plot.

mode of one orthogonal channel.

The  diagonal  entries  of 	Σ give  the  gains  of  the  channels.  By  the  definition  of  the  singular
value decomposition, the channels are arranged in the order of decreasing gain.

The three plots in Fig.  2 illustrate the radiation modes of  the first  ten orthogonal  channels.
The upper-left plot presents one of the modes 1–2. These modes correspond to the radiation
of a typical radio transmitter with a maximal directivity in the direction of the receiver (here in
the direction of the axis). The two different modes correspond to the two different-ݔ
polarisations. The upper-right plot presents one of the modes 3–6. These modes correspond
to the so-called OAM modes of  order m=1. The four different modes correspond to the two
different  polarisations  times  the  two  different  handedness  of  rotation.  There  is  a  phase
singularity and an amplitude zero of order m=1 in the direction of the receiver. The lower-left
plot presents one of the modes 7–10. These modes correspond to the OAM modes of order
m=2. The four different modes correspond to the two different polarisations times the two
different handedness of rotation. There is a phase singularity and an amplitude zero of order
m=2 in the direction of the receiver.



Table 1. Theoretical path loss in dB as a function of the link distance

log	(݀/ߣ) 2.5 3.0 3.5 4.0 4.5 5.0 5.5
Channels
1-2 0.0 3.3 12.1 22.0 32.0 42.0 52.0
3-6 0.3 11.2 30.1 50.0 70.0 90.0 110.0
7-10 1.5 22.5 51.6 81.5 111.5 141.5 171.5

Table 2. Theoretical path loss  in dB as a function of the transmitter and receiver sizes

ߣ/ܮ 5.6 10.0 17.8 31.6 56.2 100.0 177.8
Channels
1-2 50.9 41.8 31.8 22.0 12.1 3.3 0.0
3-6 107.7 89.6 69.5 50.0 30.1 11.3 0.3
7-10 168.1 140.9 110.8 81.5 51.6 22.7 1.5

The aforementioned method does not make any assumptions on the transmitter and the
receiver other than their sizes. The method provides theoretical bounds for free-space radio.

3.3. Numerical electromagnetic simulations

Let us consider the antenna structure that consists of three concentric circular antenna
arrays. The first, innermost, array consists of just one antenna element in the center of the
structure. The second, middle, array consists of four antenna elements on a circle with radius
of The third, outermost, array consists of eight antenna elements on a circle with radius .ߣ	45
of The symbol .ߣ	50 ߣ = denotes ߱/ܿߨ2  the  wavelength.  Each  of  the  three  arrays  is  driven
through a separate feeding network consisting of phase shifters and Wilkinson power dividers.
The sizes of the arrays are adjusted so that the strengths of the channels are approximately
equal when the link distance is The communication direction is in the direction of the .ߣ	000	10
-axis. The structure uses identical antenna elements. Each antenna element is a Yagi-ݔ
antenna that consists of six dipoles: a reflector, a driven dipole and four directors. The length
of the Yagi-antenna is .dB	9.8	The directivity of the Yagi-antenna is approximately .ߣ	1.38

A  free-space  radio  link  using  the  above  antenna  structure  in  both  the  transmitter  and  the
receiver  was  analysed  by  using  an  in-house  electromagnetic  integral  equation  solver.  The
results of the analysis are presented in Sec. 4.2.

4. Results and discussion

4.1. Theoretical results for a free-space radio link by using spherical wave functions

The first example considers the theoretical path loss as a function of the link distance. In the
example,  the approximate diameters of  the transmitter  and the receiver are both and ,ߣ	32
the link distance ݀ varies from to ߣ	316 The results are presented in Tab. 1. It can .ߣ	228	316
be seen that as ݀ gets tenfold, the channels 1–2 decay 20 dB, the channels 3–6 decay 40
dB, and the channels 7–10 decay 60 dB.

The second example considers the theoretical path loss as a function of the transmitter and
receiver sizes. In the example, the link distance is and the approximative diameters ,ߣ	000	10
of the transmitter and the receiver are both equal to varying from ܮ to ߣ	6 The results .ߣ	178
are presented in Tab. 2.  It  can be seen that as is ܮ  grown by the factor of √10 ≈ 3.16, the
channels 1–2 strengthen 20 dB, the channels 3–6 strengthen 40 dB, and the channels 7–10
strengthen 60 dB. The square root in the factor is due to the fact that the sizes of both the



Table 3. Channel matrix, when translational misalignment is ૛૙	ࣅ

tx 1 2 3 4 5 6 7 8 9 10
rx
1 -50.9 -62.5 -62.5 -59.5
2 -50.9 -62.5 -62.5 -59.5
3 -62.5 -62.5 -50.0 -59.9 -59.9
4 -62.5 -62.5 -50.0 -59.9 -59.9
5 -59.5 -50.1 -56.9
6 -59.5 -50.1 -56.9
7 -59.9 -59.9 -51.8
8 -59.9 -59.9 -51.8
9 -56.9 -51.8
10 -56.9 -51.8

Table 4. Channel matrix, when translational misalignment is ૝૙	ࣅ

tx 1 2 3 4 5 6 7 8 9 10
rx
1 -50.9 -56.5 -56.5 -53.5 -60.4 -60.4
2 -50.9 -56.5 -56.5 -53.5 -60.4 -60.4
3 -56.5 -56.5 -49.4 -59.2 -59.2 -54.1 -54.1 -66.1 -66.1
4 -56.5 -56.5 -49.4 -59.2 -59.2 -54.1 -54.1 -66.1 -66.1
5 -53.5 -59.2 -59.2 -49.4 -63.1 -51.1
6 -53.5 -59.2 -59.2 -49.4 -63.1 -55.1
7 -60.4 -54.1 -54.1 -63.1 -50.4
8 -60.4 -54.1 -54.1 -63.1 -50.4
9 -60.4 -66.1 -66.1 -51.1 -50.4
10 -60.4 -66.1 -66.1 -51.1 -50.4

transmitter and the receiver are changing.

The third example considers the sensitivity of the channel orthogonality to the translational
misalignment of the receiver. In the example, the link distance is and the ,ߣ	000	10
approximative  diameters  of  the  transmitter  and  the  receiver  are  equal  but  vary  with
channels: ,for Ch 1–2 ߣ	6 ,for Ch 3–6 ߣ	32 for Ch 7–10. This was done in order to have ߣ	56
the strengths of the ten different channels approximatively equal. The channel matrix was
computed for three different translational misalignments of the receiver: ,ߣ	0 and ,ߣ	20 .ߣ	40
When the misalignment is the channel matrix is perfectly orthogonal. For that reason, it ,ߣ	0
is not shown here. The other results are presented in Tabs. 3–4. Only the values over -70 dB
are shown. The following observations can be made: When the misalignment is there ,ߣ	20
appear cross-talking between the channels,  which in its  worst  is  approximately 6 dB below
the signal. When the misalignment is .the orthogonality is lost completely ,ߣ	40

The  sensitivity  of  the  channel  orthogonality  to  the  rotational  misalignment  of  the  receiver
was also studied. The channel matrix was computed for three different rotational
misalignments of the receiver: 0°, 0.1°, and 0.2°. Due to the page limitation, the numerical
results are not shown here. However, the following observations were made: When the
misalignment is 0°, the channel matrix is perfectly orthogonal. When the misalignment is 0.1°,
there appear cross-talking between the channels,  which in its  worst  is  approximately 8 dB
below the signal. When the misalignment is 0.2°, the orthogonality is lost completely.

4.2. Computed results for a free-space radio link by using electromagnetic simulations
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Table 5. Computed path loss in dB as a function of the link distance

log	(݀/ߣ) 2.5 3.0 3.5 4.0 4.5 5.0 5.5
Channels
1 52.2 62.2 72.2 82.3 92.3 102.3 112.3
3 and 5 53.3 80.0 74.5 82.6 100.4 120.1 140.1
7 and 9 52.8 56.3 74.7 82.2 110.6 140.6 170.4

This section presents computed results for a free-space radio link when both the transmitter
and the receiver use the antenna structure explained in Sec. 3.2.

In  the  following  example,  the  path  loss  was  computed  in  cases  where  the  link  distance ݀
varies from to ߣ	316 .ߣ	228	316  The results  are presented in Tab. 5.  It  can be seen that the
path loss behaves similarly as in the theoretical results in Tab. 1, only the overall strengths
of  the channels are much lower.  This  is  because in this  example the radio link is  setup by
using specific antenna structures, which are not ideal.

The sensitivity of the channel orthogonality to the translational and the rotational
misalignment was analysed in a similar  manner as in Sec.  4.1.  Due to the page limitation,
the numerical results are not shown here. However, it is noted that the results were similar
to those presented in Sec. 4.1.

In general,  the results  obtained by the two very different methods explained in Secs.  3.2.
and 3.3.  and presented in Secs.  4.1.  and 4.2.  show very similar  behaviour of  a free-space
radio link using the so-called OAM modes.

4.3 Generation of higher-order modes with circular antenna arrays

The  far-field  radiation  pattern  of  any  antenna  array  is  determined  by  the  amplitude  and
phase weighting of each individual element. This weighting function is commonly referred to
as  the  array  excitation  function.  For  circular  antenna  arrays,  the  array  excitation  function
is necessarily periodic with period (ߴ)ܨ ,radians due to array geometry, that is ߨ2

where wm represents the complex Fourier coefficient of the mth spatial harmonic of the array
excitation function. Each of the (2M+1) terms of F(ߴ)  is  commonly  called  a  phase  mode
excitation of the array.

For  a  continuous  circular  array  with  a  radius R, the far-field directional pattern (߶,ߠ)௠ܦ
arising from the mth phase mode has a similar phase variation with azimuthal angle as the
array excitation function but amplitude scaled by a Bessel function coefficient. In particular,

where denotes polar angle, φ is azimuthal angle, and ߠ Jm(x) denotes the mth order Bessel
function  of  the  first  kind.  Note  that  directional  pattern  exhibits  similar  azimuthal  phase
behaviour as the regular spherical vector wave functions presented in Sec. 3.2.

Since ݇ = ,ߣ/ߨ2  in  order  to  determine  how  many  phase  modes  can  be  excited  for  a
continuous circular array of radius R,  one  needs  to  study  the  behaviour  of  the  Bessel
functions ܴ݇)௠ܬ sinߠ). By studying the plots of a few first low-order Bessel functions, we can
conclude that OAM mode with reasonable strength is obtained when the order of the mode m
is  comparable  to  the  argument  of  the  Bessel  functions.  In  other  words,  the  continuous
circular array with a radius R is expected to generate OAM modes with reasonable strength
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up to order	ܯ ≈ .ߣ/ܴߨ2

For a more practical, N-element array with equal spacing between elements, we sample the
continuous array around the circumference. Thus, N radiating elements are located at angles
௡ߴ = where ܰ/݊ߨ2 n=0,1,…,N-1. If a continuous circular array generates M spatial harmonics,
then, according to spatial version of sampling theorem, we need at least (2M+1) elements to
reproduce those spatial harmonics, which implies that the spacing between adjacent
elements on the arc cannot exceed half-wavelength.

Multiplexing of many OAM modes is relatively straightforward provided that antenna array is
able  to  excite  the  corresponding  phase  modes.  Let  us  assume  that  we  want  to  transmit
complex symbols ܺିெ , … ,ܺ଴, … ,ܺெ. For example, one can simply define excitation weights as

for all ݉ = ,ܯ− … ,0, .ܯ…  This  weighting causes all  of  the modes to contribute equally  to the
beam pattern. Consequently, the signal to be sent from the nth transmit  element of  an N-
element circular antenna array is

which can be efficiently implemented using linear pre-processing and Inverse Discrete
Fourier Transform matrices.

4.4 Reception of higher-order modes with circular antenna arrays

Let us consider a continuous circular array with a radius 	ܴ located in ݕݔ	 plane and assume
that the OAM-carrying beam arrives from direction described by polar angle and azimuthal ߠ
angle ߶. The array response to the incoming signal is

where

is the phase of the incoming beam at misaligned location of the reception array The	.(଴ݕ,଴ݔ)
	݈th phase modes can be extracted from the signal without any crosstalk provided that the  ݎ	
mode  excitation  function  of  the  reception  array is made orthogonal to (ߴ)௟ݓ	
exp[ܴ݅݇ sinߠ cos(߮ − (ߴ + ݅݉߰] for  all ݉ ≠ ݈.  Thus,  transmitted  symbols  can  be  extracted  from
the signal r without any crosstalk by passing the signal r through a parallel bank of (2M+1)
crosscorrelators provided that array excitation functions	ݓ௟(ߴ), 	݈ = ,ܯ− … ,0, form a set of , ܯ…
orthonormal basis functions, that is, the crosscorrelation coefficient

where asterisk denotes complex conjugation. The simplest set of orthonormal functions is

which requires perfect knowledge of direction of arrival Due to space limitations, we do .(߶,ߠ)
not present the plots of crosscorrelation coefficients for different antenna misalignments but
mention one interesting case. Namely, when total displacement ଴ଶݔ + ଴ଶݕ < ܴଶ, then for even
values of |݉− ݈|, the crosscorrelation ߷௟௠ is zero. In other words, when direction of arrival
and antenna location (߶,ߠ) ,are perfectly known (଴ݕ,଴ݔ) ଴ଶݔ + ଴ଶݕ < ܴଶ	, then the orthogonality
between some modes is preserved even with small translational antenna misalignment.



Figure 3. Propagation of OAM wave modes in a two-ray channel.

For a more practical, N-element  circular  arrays  with  equal  spacing  between  elements,  we
sample the continuous array around the circumference. Thus, N radiating elements are
located at angles ௡ߴ = where ܰ/݊ߨ2 n=0,1,…,N-1 and integration is replaced by summation.
The bank of crosscorellators can be efficiently implemented using Discrete Fourier Transform
matrices.

4.5 Multipath propagation of OAM wave modes

Let us consider a simple two-ray propagation channel shown in Fig. 3. We assume that the
receiver  antenna  receives  two  signal  components:  direct  line-of-sight  component  and  a
ground-reflected component. These two components arrive at different time instants due to
difference in propagation distance and usually are not collinear, which means that their
angles-of-arrival are different.

Angular  momentum  is  a  cross  product  of  the  position  vector  and  linear  momentum.
Consequently,  the angular  momentum is  an axial  vector which means that it  changes sign
under space reflection. In other words, the handedness of OAM wave mode is reversed when
it is reflected off of a surface. Similar effects are observed also for circularly polarized wave
modes, the polarization is reversed when the wave is reflected from a surface.

Two-ray  propagation  channel  is  a  rather  simple  model.  The  signal  received  by  receiver  is
subject to cross-mode interference because the signal reflected from the ground changes its
handedness. In a real environment, the number of reflections cannot be controlled. Thus, the
signal received by receiver will be subject to cross-mode interference if the number of
reflections is odd and same-mode interference if the number of reflections is even.

If the interference is treated as noise, then one observes signal-to-noise degradation at the
output  of  detector.  We  simulated  different  interference  scenarios  for  the  first  order  OAM
wave modes and found that degradation of signal-to-noise ratio due to cross-mode
interference is between 3 and 6 dB. On the other hand, the signal-to-noise degradation due
to same-mode interference is essentially unbounded. The worst-case interference is when
the  phase  difference  between  direct  and  reflected  component  is  around  180  degrees  and
both components are collinear or almost collinear.
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5. Conclusions
We have demonstrated the existence of so-called OAM wave modes using theory of spherical
wave functions and discussed how they can be generated and received with circular antenna
arrays. The additional OAM wave modes form a set of additional independent parallel radio
channels that can be exploited as additional degrees of freedom by the system designer. For
example, they can be used to obscure information transmission by means of mode hopping.
Nevertheless, there are certain limitations in using OAM wave modes.

Perhaps one of the most important limitations is relatively fast decay of signal strength with
the distance. In particular, while the two basic radio channels using two orthogonal
polarizations  decay  as  1/d2,  the  additional  radio  channels  using  the  OAM  modes  decay  as
1/(d2+2|m|) where d is the link distance and m is the order of the OAM mode. This is a direct
consequence  of  the  fact  that  for  higher-order  OAM  wave  modes,  most  of  the  transmitted
energy is concentrated in a ring whose diameter increases with the distance. However, the
weakness of the additional radio channels using the OAM modes can be compensated by
enlarging the transmitter and/or the receiver antennas which sometimes is not practical.

From signal processing point of view, transmission of OAM modes shares many similarities to
multicarrier transmissions. In particular, OAM-based system and multicarrier system are
sensitive to phase noise. Furthermore, the orthogonality of OAM wave modes is sensitive to a
misalignment of the transmitter and/or the receiver antennas and multipath propagation that
for the purpose of current studies can be understood as forms of spatial phase noise. For
OAM  wave  modes,  multipath  propagation  is  a  more  subtle  phenomenon  because  each
reflection introduces OAM wave-mode swap from left- to right-handed one and vice versa. To
cope with the problem of wave-mode swap, the receiver must be able to discriminate and,
possibly,  combine  left-  and  right-handed  modes,  for  example,  by  using  a  circular  array  of
2M+1 antennas.

It seems possible that the sensitivity of the channel orthogonality to a misalignments of the
transmitter and/or the receiver and multipath propagation can be exploited to set up point-
to-point  secure  radio  links,  for  example  tactical  data  links  for  Command,  Control,
Communications, Computers, and Intelligence (C4I) applications, which would be difficult to
intercept and resilient to jamming.


