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Abstract  

Lane deviation has frequently been used as an index of drowsy driving in cars and trucks. Re-
search has tried to quantify driving performance on the basis of several other signals and me-
trics, with the aim to warn the driver before his/her performance is critically degraded. Howev-
er, a lack of published largescale comparisons between available signals and metrics precludes 
informed decisions on which signals and metrics may best predict driver drowsiness. This re-
search aimed to fill this gap. We show that metrics derived from steering performance consti-
tute an additional dimension of driving performance, which when combined with lane deviation 
may non-invasively enhance the ability to detect driver drowsiness. 

A total of 41 healthy adults (ages 22-39y; 12 females) participated in a 2-week in-residence 
laboratory study. The study included a practice day, five simulated workdays, a one-day or 
two-day break, another five simulated workdays, and a recovery day. Eleven participants were 
randomized to a day shift condition (daily time in bed 22:00-08:00) and the other 30 partici-
patns were assigned to a night shift condition (daily time in bed 10:00-20:00). Each workday 
included four 30-minute driving sessions administered at fixed intervals through the day (the 
sessions in the day shift condition started at 09:00, 12:00, 15:00, and 18:00, and the sessions 
in the night shift condition started at 21:00, 00:00, 03:00, and 06:00). The participants drove 
a simulated Ford Taurus in a standardized scenario of rural highways on a high-fidelity driving 
simulator (PatrolSim IV, L-3 Communications). The standardized scenario included ten 
straight, uneventful road segments with speed limit 88.5 km/h and length 0.8 km. From these 
segments we extracted 87 metrics of driving performance. 

The variance in the data set (41 subjects, 40 driving sessions, 87 metrics) was examined with 
principal component analysis. This yielded two dominant dimensions of driving performance, 
which were represented by metrics reflecting steering variability and lane variability. The 
steering dimension explained 33% of the variance and the lane dimension explained another 
14% of the variance. Mixed-effects ANOVA revealed significant interactions of condition (day 
shift or night shift) by time of day (the first, second, third, or fourth driving session of the 
workday) for the steering dimension (F=3.11, P=0.026) and lane dimension (F=4.51, 
P=0.004).  

Our results suggest that steering-related metrics may provide more information about driving 
performance than lane-related metrics do. Real-time driver drowsiness detection may substan-
tially improve with technologies incorporating steering-related metrics. 
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1. Johdanto / Introduction  
Sleepiness behind the wheel (“drowsy driving”) is one of the main contributors to road 
crashes (NTSB, 1999). In Europe up to 20% of all traffic accidents are believed to be due 
to driver sleepiness (AWAKE, 2002). In the U.S., falling asleep while driving causes at least 
100000 crashes annually: 40000 lead to nonfatal injuries and over 1500 lead to fatal inju-
ries (Royal, 2002). These crashes happen primarily between midnight and 06:00 and are 
recognizable because they involve a single car with a sober driver who is alone and does 
not attempt to prevent the car from drifting off the road. In this context, finding counter-
measures against sleep-related traffic accidents has increasingly become a priority over 
the last decade. 

Prior research has focused on developing objective systems that monitor the driver and 
warn him/her when sleepiness or degraded driving performance compromise safety. The 
research trends towards systems that integrate both sleepiness detection and poor driving 
performance (Vadeby et al., 2010). Thus far, though, no commercially available system 
provides a sufficiently reliable warning system (Anund and Kircher, 2009). 

The most accurate techniques to monitor sleepiness employ physiological measures (Johns 
et al., 2008, Vadeby et al., 2010). However, these tend not to be practicable for drivers, 
because the detector systems – involving electrodes or glasses – on which they rely are 
obtrusive to the driver. The most promising technique currently available is perhaps the 
video-based or infrared beam-based measurement of percent eye closure (Johns et al., 
2007, Bergasa et al., 2006), although this technique requires high sampling frequency and 
is prone to data loss in sunny conditions or when the driver looks away. 

Monitoring driving performance is unobtrusive because performance is measured indirectly 
from the behavior of the car – via signals of, e.g., its lane position, steering wheel angle, 
and speed. From these signals (“embedded performance metrics”), researchers usually 
compute lane deviation and other metrics derived from lane position, but metrics derived 
from steering and speed are also used (Kircher et al., 2002, Berglund, 2007, Mattson, 
2007). In fact, in a literature search we found 87 metrics that have been used for research 
purposes. A few studies also made comparisons between a handful of metrics (Vadeby et 
al., 2010, Berglund, 2007, Mattson, 2007). However, it is unclear which metrics provide 
the best proxy for driver performance, because to our knowledge there is no extensive da-
ta-driven comparison between and evaluation of the signals and metrics. The present re-
search contributes such a comparison and evaluation. 

 

2. Research objectives and accomplishment plan  
The overall aim of this 2-year project was to develop sensitive and specific metrics of driv-
er drowsiness that are based on on-road, real-time signals. 

For this purpose we used a high-fidelity driving simulator. Most research on driving per-
formance employs simulators because they provide safety for the study participants, high 
repeatability, and ecological validity when the interest is in relative changes of perfor-
mance (Philip et al., 2005). 

Our dataset is drawn from two different simulator studies. N=41 participants participated 
in the two-week in-laboratory studies, in which they were assigned to either a day shift or 
a night shift schedule. A total of 40 driving sessions were administered to each participant 
at 09:00, 12:00, 15:00 and 18:00 in the day shift schedule, or at 21:00, 00:00, 03:00 and 
06:00 in the night shift schedule. We quantified each driving session with 87 selected me-
trics and explored the resulting dataset with principal component analysis (PCA). PCA iden-
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tifies the underlying dimensions of a dataset and ranks them according to the amount of 
total variance that they can explain (Hatcher, 1994, Davies and Fearn, 2005). The dataset 
does not only reflect the variance in the original signals drawn from the simulator. It also 
reflects the variance that the shift conditions induce, as well as the variance among all the 
metrics. Metrics that correlate strongly with the dominant dimensions, or the factor scores, 
should provide potent predictors of driver drowsiness. 

 

3. Materials and methods  
Our dataset is drawn from two different simulator studies, Study 1 and Study 2. 

3.1  Participants 

Twenty-five participants (ages 22 to 39, mean(±SD) 27.3(±5.5), males 50%) completed a 
14-day in-laboratory study (Study 1), and 16 participants (ages 22 to 39, mean (±SD) 
27.5(±5.65), males 100%) completed a 16-day in-laboratory study (Study 2). The partici-
pants were recruited with advertisements in local newspapers and on the internet. They 
received compensation ($2235 in Study 1 and $2485 in Study 2). The inclusion criteria 
were as follows: valid driver’s license, good health (questionnaires and physical examina-
tion), absence of sleep disturbances (questionnaires, sleep diary, at-home actigraphy and 
baseline polysomnography), no shift work or travel across time-zones within one month of 
entering the study (questionnaires), no medications, no smoking, and no susceptibility to 
simulator adaptation sickness. The participants received detailed information about the 
study and signed an informed consent form before inclusion in the study. The study was 
approved by the Institutional Review Board of Washington State University. 

3.2  Protocol 

In Study 1, the experiment had two different shift conditions: day shifts (time in bed be-
tween 22:00 and 08:00) and night shifts (time in bed between 10:00 and 20:00). We ran-
domized 12 participants to the day shift and 13 to the night shift. After five shifts, each 
participant had a 34-hour restart period (a total of 20 hours of sleep and 14 hours awake) 
before commencing the next five shifts. Each condition commenced with two baseline days 
and ended with a recovery day. 

In Study 2, the experiment had only a night shift condition (time in bed between 10:00 
and 20:00). After five shifts each participant had a 58-hour restart period (a total of 30 
hours of sleep and 28 hours awake) before commencing the next five shifts. The schedule 
of baseline and recovery days was identical to that of the night shifters in Study 1. 

Each participant took a total of 40 test sessions during the shifts in the experiment. The 
day shifters had scheduled test sessions at 09:00, 12:00, 15:00, and 18:00. The night 
shifters had scheduled test sessions at 21:00, 00:00, 03:00, and 06:00.  

3.3  Measurements 

We used a high-fidelity driving simulator (PatrolSim IV, L-3 Communications) that we 
adapted for research purposes by installing additional hardware and software (Moore et al., 
2009). We developed a standardized driving scenario that involved rural highway driving 
with 10 straight and uneventful road segments (“straightaways”) and 5 to 7 randomly lo-
cated encounters (with pedestrians or dogs crossing the road). The drive totaled 30 mi-
nutes if the driver abided by the speed limit of 88.5 km/h throughout the scenario. The si-
mulator continuously sampled lane position, steering wheel angle, driving speed, accelera-
tor usage, car yaw angle, and engine torque at 72 Hz. From these signals we extracted the 
10 straight segments and concatenated them so as to emulate a single continuous straigh-
taway. Since each segment was about 30 seconds (depending on the driving speed), the 
concatenated straightaway that we used for analyses (see section 3.4) was about 5 mi-
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nutes. 

Each driving session was paired with a control battery of performance tests. Immediately 
prior to a driving session we administered the 10-minute psychomotor vigilance task (PVT) 
test (Van Dongen et al., 2003). The outcome metric was the number of lapses, defined as 
reaction times longer than 500 ms. Immediately after a driving session we administered 
computerized versions of the Karolinska Sleepiness Scale (KSS) and the 3-minute digit-
symbol substitution task (DSST). In the KSS participants rated their feeling of sleepiness 
from 1 (very alert) to 9 (very sleepy). In the DSST participants were shown a key where 
digits (1 to 9) were associated with nine symbols. During the test, symbols were shown 
one at a time and participants typed the corresponding number. The outcome metric was 
the total number of correct responses. 

3.4  Data analyses 

We searched the literature for metrics that researchers have used to characterize driver 
performance. We found the metrics from papers on driving and papers on analysis of phy-
siological signals. We also developed new metrics when we identified a performance aspect 
that was not reported in the literature on driving. From the 5-minute straightaway signals 
(see section 3.3) we extracted, in total, 87 metrics. We used Matlab 7.5.0 for the compu-
tations. 

Study 1 yielded a 1000×87 matrix (from 25 participants, 40 bouts per participant, and 87 
driving metrics). Study 2, which we used as a validation study, yielded a 640×87 matrix. 
To reduce the dimensionality of each matrix we performed principal component analyses 
(PCA) with orthogonal varimax rotation (SAS 9.2; SAS Institute, Inc.). We inspected the 
scree plots of eigenvalues to determine how many principal components to retain before 
rotation in order to explain most of the variance in the data. Given the relatively large 
number of metrics, we only interpreted principal component loadings with an absolute val-
ue of 0.5 or greater (Hatcher 1994). 

To evaluate the effect of circadian timing on the retained principal components in study 1, 
we performed a mixed-effects analysis of variance (ANOVA) of shift type (day, night) by 
time of day. A significant interaction effect (P≤0.05) would indicate that the retained prin-
cipal components could be indicative of drowsiness. To evaluate whether changes in the 
outcome of the PVT, KSS, and DSST in the control battery could explain changes in the 
driving performance, we also performed mixed-effects ANOVA of shift type by time of day 
with PVT, KSS, and DSST as covariates. 

 

4. Results and discussion  
The scree plot of eigenvalues indicated that there were two principal components, which 
together explained 47% of the total variance in the driving data (Fig. 1). Metrics capturing 
steering variability clustered on the fist principal component (steering variability), and me-
trics capturing lane variability clustered on the second principal component (lane variabili-
ty). 

Above we found that the principal component steering variability explained more variance 
than the principal component lane variability did. To verify the finding we performed a post 
hoc PCA involving four steering-related, four lane-related, and four speed-related metrics 
(we applied the metrics standard deviation, variance, root mean square, and average on 
each of the steering-, lane-, and speed signals). The scree plot revealed that there were 
still two principal components, which together explained 47% of the total variance in the 
data. Moreover, the steering-related metrics still clustered on the first principal compo-
nent; the lane-related metrics clustered on the second principal component. 
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Mixed-effects ANOVA showed that with steering variability, the interaction of shift type by 
time of day was significant (F=3.11, P=0.026, see Fig. 2A). With lane variability, the inte-
raction of shift type by time of day was significant (F=4.51, P=0.004, see Fig. 2B). The 
finding that circadian timing affected steering variability and lane variability suggested that 
they could be indicative of drowsiness. The mixed-effects ANOVA of shift type by time of 
day with PVT, KSS, and DSST as covariates showed that steering variability covaried with 
PVT (F=13.8, p<0.001, compare Figs. 2A and C) and KSS (F=16.6, p<0.001), but not with 
DSST (F=0.97, p=0.33). Lane variability covaried with PVT (F=14.5, p<0.001), KSS 
(F=37.5, p<0.001), and DSST (F=56.8, p<0.001, compare Figs. 2B and D). This means 
that for both steering variability and lane variability the PVT and KSS were significant co-
variates, but only for lane variability the DSST was a significant covariate. Thus, lane va-
riability had a learning curve not seen in steering variability. It indicates that the PCA 
teased apart metrics that quantify different aspects of drowsiness. 

 

 
Fig. 1.  Scree plot of eigenvalues expressed as variance explained. The variance explained 
is the eigenvalue divided by the number of components M (M=87). Component 1 explained 
33% of the variance and component 2 explained 14% of the variance. 
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Fig. 2.  Driving performance and PVT performance in the day-shift (blue) and night-shift 
(red) conditions of study 1. In panels A, B, C: steering variability, lane variability, and 
number of PVT lapses as a function of time of day, collapsed over days within each 5-day 
period. In panels D: lane variability as a function of days, collapsed over time of day for 
each 5-day period. The panels show group means (with standard errors). Times of day 
shown on the x-axes are through the day (from 9 am until 6 pm) for the day-shift condi-
tion and through the night (from 9 pm until 6 am) for the night-shift condition. 

 
5. Conclusions  
This study involved repeated driving sessions throughout a 2-week period of simulated 
day-shift and night-shift conditions. We showed that among the 87 selected metrics of 
driving performance there are two dominant dimensions, steering variability and lane va-
riability, which together explain 47% of the total variance in driving performance. We also 
showed that whereas both steering variability and lane variability covary with PVT and 
KSS, only lane variability covaries with DSST, which indicates that metrics of steering va-
riability and lane variability capture different aspects of driving performance. 

The finding that steering variability conveys more information about driving performance 
agrees with the finding of Sandberg et al. (2011), who in a real-road study found no ef-
fects of circadian timing on the standard deviation of lane position. If steering is more in-
formative about driving performance and driver drowsiness, this would be a positive find-
ing in the sense that it is more difficult to monitor the lane position of the car – usually this 
is done by videoing lane markers and by applying picture recognition software. 

In the current study the control battery PVT, which is a well-validated test of performance 
impairment from sleep loss and circadian misalignment, showed that the performance im-
pairment in the current night-shift participants was modest (Fig. 2C) compared to the do-
cumented impairment from a night of total sleep loss or a week of sustained sleep restric-
tion with 6 hours sleep per night (Van Dongen et al., 2003). Therefore, the next step 
would be to repeat the study with higher levels of sleep deprivation. 

 

6. Scientific publishing and other reports produced by the research project 
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Abstract: 

Forsman P, Mott C, Vila B, Van Dongen H. Combining lane deviation with steering metrics 
of simulated driving to detect driver drowsiness. SLEEP 2011; Volume 34, Abstract Sup-
plement, A113-A114. (http://www.journalsleep.org/Resources/Documents/2011abstractsupplement.pdf, 
haettu 1.11.2011) 

Presentation: 

Forsman P. New metrics for detecting drowsy driving in real time as derived from high-
fidelity driving simulators. Associated Professional Sleep Societies, Minneapolis, June 2011. 

Manuscript:  

We are finalizing a manuscript on the current findings for submission to an international 
peer-reviewed journal. 
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